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Dr. Ravishankar Gokare

This book is dedicated to Dr. Ravishankar Gokare, a renowned plant biotechnologist 

and food biotechnologist of international repute.

Ravishankar Gokare was born in 1954 in Bangalore. He completed his BSc in 1972 at Bangalore University and further studies, MSc 
and PhD, in botany at the M.S. University of Baroda. He was a PhD student of Professor Atul R. Mehta, a renowned plant tissue cul-
turist trained in the lab of Professor H.E. Street at Swansea, who was known as the Father of Modern Plant Tissue Culture. During his 
PhD he worked on metabolic regulation of secondary pathways in plants. He continued his postdoctoral work at CSIR Laboratory at 
Jammu-Tawi working on medicinal plants. He joined the Central Food Technological Research Institute, Mysore, in 1984 as Scientist 
B, where he had the fortune of working with India’s most vibrant Algal Research Group, which was started by Dr. Wolfgang Becker 
of University of Tubingen in association with the eminent algal biotechnologist, Dr. L.V. Venkataraman. He rose to the level of Chief 
Scientist and Head of Plant Cell Biotechnology Department, a position he held for over 18 years. 

Ravishankar initiated plant biotechnology and food biotechnology research at the Central Food Technological Research Institute 
(CFTRI), where he established a strong research group working on aspects of micro-propagation, conservation of biodiversity, 
bioactive metabolites, biosynthetic pathways in plants and microbes, metabolic regulation of secondary metabolites, post-harvest 
technologies for value addition to foods, and downstream processing of metabolites of food applications, such as food pigments, non-
nutritive sweeteners, flavor molecules, etc. He was a pioneer in using elicitor technology to enhance metabolite yield in a standing 
crop of various plantation crops, which followed as an agronomic practice in various countries. Ravishankar is a plant conservation 
expert responsible for developing the tissue culture technology for a banana variety, Nanjangud Rasabale, which was facing the brink 
of extinction. Similarly, he was responsible for the development of technology for Decalepis hamiltonii (swallow root), a rich herb 
for adding value as a potent antioxidant source and an anticancer agent with the development of several recipes for health food appli-
cation, including health drinks. The technology of swallow root was combined with the development of a mass production system 
through tissue culture methodology and the agronomic practice of cultivation, allowing for the conservation and sustainable utiliza-
tion of this endangered herb. The benefits of this technology were transferred to the Soliga Tribes of BR Hills who are custodians 
of the germplasm, exemplifying the sharing of Intellectual Property Rights. Under Ravishankar’s leadership, this was acclaimed as 
a star project of the Department of Science and Technology of the Government of India. In 1992, he received the Indian Science 
Congress Award for Young Scientist from the then Prime Minister of India for these contributions. 

Ravishankar moved from metabolic regulation of secondary pathways to metabolic engineering in several systems. His group 
pioneered in the initiation of coffee biotechnology research under the Jai Vigyan project of the Government of India, sponsored by 
the Department of Biotechnology, which resulted in the development of transgenic coffee plants with lowered caffeine. The technol-
ogy is useful for improvement of coffee plants for various traits. Various institutions including the Coffee Board, which collaborated 
under the All India Coordinated Project, benefited from the transformation system developed by his group. Ravishankar and his team 
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worked on metabolic engineering of carotenoids in algae, with the production of astaxanthin in Dunaliella spp., which is otherwise 
known for β-carotene only. This was achieved by cloning the genes of astaxanthin pathway from Haematococcus pluvialis into 
Dunaliella. Similarly, the metabolic engineering of fatty acid production to produce gamma linolenic acid in soybean by the expres-
sion of the Delta 6 desaturase gene of Spirulina is another example of his innovative research. He is also well known for his studies 
on genomics in higher plants and microalgal systems. These studies earned him a coveted award in new biology given by the Indian 
Science Congress Association. 

Ravishankar is known for his contributions with Dr. L.V. Venkatraman in commercializing spirulina technology in India. This 
is a model for several other biotechnologists in India wherein the involvement of industry was realized from the beginning of the 
scale-up to the transfer of technology, culminating in Asia’s largest spirulina production unit in Nanjangud by Bhallarpur Industries 
Limited. This contribution was recognized by the Government of India with a National Technology Day Award in 2003. Presently, 
the Government of Karnataka has taken up spirulina supplementation for malnourished children, under the mid-day meal program. 
His group have developed several value-added spirulina food products for meeting the micronutrient deficiencies caused by a defi-
ciency of iron, gamma linolenic acid, and vitamin A in staple diets. Ravishankar is a great mentor, too. He has guided over 25 PhD 
students as a supervisor and mentored over 160 graduate students, who have occupied high positions in India and abroad in academia, 
R&D labs, and in industry. He has been a popular teacher who is known for motivating young minds. His love for the academics 
and student-centric activities have been well recognized at his present role as Vice President of Life Sciences and Biotechnology at 
Bangalore’s pioneering research and innovation driven institution, namely Dayananda Sagar Institutions/Dayananda Sagar University 
at Bengaluru.

His innovative ideas, hard work, and dedication is evidenced by the publication of 340 research and review papers in peer-reviewed 
journals and over 45 patents awarded in India and abroad. His work has received over 13,500 citations with an h-index of 57 at pres-
ent. Ravishankar is a fellow of several academies in India and abroad. He plays an active role in the International Union of Food 
Science and Technology and the Institute of Food Technologists of the USA, who have recognized him with the honor of fellow. He 
is widely traveled and has given invited talks in many international symposia and seminars. He has been a visiting professor to uni-
versities in Japan, Taiwan, and Russia. 

This book is dedicated to Dr. Ravishankar Gokare A, for mentoring a large number of students including one of the authors, 
Dr. Ramakrishna, and several researchers, who are contributing immensely to the field of plant biotechnology for food application. 
His simplicity, humble behavior, kindness to colleagues, and positive outlook is exemplary. We sincerely hope that he will continue 
to make contributions of global relevance and to nurture young generation of researchers to be global leaders.
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Foreword

Not every scientist in the world has the basic skills to write and 
compile a comprehensive book on a challenging research area 
like Metabolic Adaptations in Plants During Abiotic Stress. 
Dr. Akula Ramakrishna and Dr. Sarvajeet Singh Gill completed 
this work remarkably. They have teamed up to cover all the burn-
ing topics and mechanics pertaining to metabolic adaptations 
of plants during the adverse and stressed conditions related to 
polyamines, indoleamines, antioxidative systems, adaptations 
in seeds under arid conditions, the roles of osmoregulators, sec-
ondary metabolites and miRNAs,  kinase signaling, the impact 
of ozone and flavonoids, mechanisms and operating pathways 
during stresses, photoinhibitory responses, genomic response, 
antioxidant isoenzymes, management of heavy metal stress, pes-
ticide stress, ATPases in ion homeostasis, genetic engineering 
approaches for abiotic stress tolerance in plants for sustainable 
agriculture, and food security. All these topics make this book 
wonderful and highly useful to the scientific community.

This book is worth reading for every student and scientist 
doing active research in agriculture and abiotic studies. Some of 
you may be wondering why I am praising this book. This book 
matters because our climate is changing, and the plant king-
dom is seriously affected, which plays a significant role in the 
sustainability of human life and the whole ecosystem on Earth. 

I strongly believe the content described here will be very useful 
for taking precautionary steps to sustain our agricultural system 
during upcoming adverse conditions.

This book provides a wide view of abiotic stress research mate-
rials to diversify each person’s learning experiences. Students 
should cultivate new ideas by relating to the current research 
and knowledge described in simple and eloquent terms in each 
chapter. This thorough research should improve their knowledge 
and nurture their research productivity, as well stimulate incen-
tives for further learning.  This well-organized book provides 
an excellent opportunity for students, as well as for the whole 
scientific community.

I feel honored and privileged to have this opportunity to write 
a foreword to Dr. Ramakrishna and Dr. Gill’s book. The chal-
lenges of abiotic stress in plant growth and development are evi-
dent, and the authors’ dedication in this direction is appreciated. 
This is the area of future research that will help us all to thrive, 
along with plants.

Shashi Kumar, PhD
Group Leader, Metabolic Engineering Group,

International Center for Genetic Engineering and 
Biotechnology (ICGEB),

Aruna Asaf Ali Marg, New Delhi - 110 067
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Salinity Stress

General Considerations of Salt 
Stress as a Global Problem

Salt stress is one of the major abiotic stresses that seriously affect 
crop growth and yield. According to the Food and Agriculture 
Organization FAO (2009), there are at least 800 million hect-
ares of land subjected to salinity in the world, accounting for as 
much as 6% of the world’s total area. Although some of the salt-
affected influences are the result of natural causes, the majority 
are derived from degraded cultivated agricultural land (Tang et 
al., 2014). It is estimated that 30% of the world’s irrigated areas 
already suffer from salinity problems (UNESCO Water Portal, 
2007). Each year, soil salinity increases worldwide, and it is 
predicted that it will cause a loss of up to 50% of the cultivat-
able land by 2050 (Henry et al., 2015). Expansion of agriculture 
to semi-arid and arid regions with the use of intensive irriga-
tion will increase secondary salinization as a result of changes 
in the hydrologic balance of the soil between water applied 
(irrigation or rainfall) and water used by crops (transpiration). 
Moreover, the faster-than-predicted change in global climate 
(Intergovernmental Panel on Climate Change, 2007) and the dif-
ferent available scenarios for climate change suggest an increase 

in aridity for the semi-arid regions of the globe in the near future. 
Together with overpopulation this will lead to an overexploita-
tion of water resources for agriculture purposes and increased 
constraints on plant growth and survival; this will affect the abil-
ity to realize crop yield potential (Chaves et al., 2009).

The United States Department of Agriculture (USDA) Salinity 
Laboratory defines a saline soil as having an electrical conductiv-
ity of the saturation extract (ECc) of 4 dS m−1 or more. ECc is 
the electrical conductivity of the saturated paste extract, that is, 
of the solution extracted from a soil sample after being mixed 
with sufficient water to produce a saturated paste. The most 
widely accepted definition of a saline soil has been adopted from 
FAO (1996) as one that has an ECc of 4 dS m−1 or more and soils 
with ECcs exceeding 15 dS m−1 are considered strongly saline. 
Traditionally, four levels of soil salinity based on saline irriga-
tion water have been distinguished: low salinity is defined by 
electrical conductivity of less than 0.25 dS m−1; medium salinity, 
0.25–0.75 dS m−1; high salinity, 0.75–2.25 dS m−1; and very high 
salinity with an electrical conductivity exceeding 2.25 dS m−1 (US 
Salinity Laboratory Staff, 1954). The common cations associated 
with salinity are Na+, Ca2+ and Mg2+, while the common anions 
are Cl−, SO4

2− and HCO3
− (FAO: Land and Water Division, 2013).

Saline stress in plants refers to the presence of neutral salts 
such as NaCl or Na2SO4 in soil, whereas alkaline stress is only 
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related to the occurrence of alkaline salts: Na2CO3 or NaHCO3. 
These conditions often co-occur in nature, with variable neu-
tral to alkaline salt proportions according to the soil (Paz et al., 
2014). Since Na+ in particular causes deterioration of the physi-
cal structure of soil and along with Cl− is toxic to plants, these 
are considered the most important ions. Historically soils were 
classified as saline, sodic or saline-sodic based on the total con-
centration of salt and the ratio of Na+ to Ca2+ and Mg2+ in the 
saturated extract of the soil (Yadav et al., 2011).

According to the incapacity to grow on high salt medium, 
plants have also been classified as glycophytes or halophytes. 
Most plants are glycophytes and cannot tolerate salt stress and 
in a large proportion of crops cannot tolerate Na+ concentrations 
at 50 mM or higher (Tang et al., 2014). The deleterious effects 
of salinity on plant growth are associated with: (1) low osmotic 
potential of soil solution (water stress), (2) nutritional imbalance, 
(3) specific ion effect (salt stress) or (4) a combination of these 
factors (Parvaiz and Satyawati, 2008). Early plant responses 
to water and salt stress have been considered mostly identical; 
drought and salinity share a physiological water deficit that 
affects, more or less intensely, all plant organs (Munns, 2002). 
However, under prolonged salt stress plants respond in addition 
to dehydration to hyper-ionic and hyper-osmotic stress (Fricke 
et al., 2006). Na+ and Cl− are taken up and, increasingly, displace 
mineral nutrients such as K+, Ca2+ and nitrate (Campestre et al., 
2016). Although accumulation of Na+ and Cl− causes osmotic 
and water potential adjustment of cells, it increases the risk of 
long-term ion toxicity. If Na+ and Cl− are not compartmental-
ized appropriately, exported or secreted, leaf tissue water deficit 
per se can be triggered not only by low soil water content but 
also by high vapor pressure deficit of the atmosphere (Chaves 
et al., 2016; Paz et al., 2014). Photosynthesis, together with 
cell growth, is among the primary processes to be affected by 
drought (Chaves, 1991) or by salinity (Munns et al., 2006). The 
effects can be direct, as the decreased CO2 availability caused by 
diffusion limitations through the stomata and the mesophyll, and 
alterations of photosynthetic metabolism, or they can arise as 
secondary effects, namely oxidative stress. The latter are mostly 
present under multiple stress conditions and can seriously affect 
leaf photosynthetic machinery (Chaves et al., 2009).

In recent years, much attention has been devoted to the involve-
ment of polyamines (PAs) as second messengers in the context of 
a variety of environmental stresses (Marina et al., 2008). These 
low-molecular-weight, aliphatic nitrogenous compounds, which 
are protonated at physiological pH, were originally thought to 
bind to anionic macromolecules, including proteins and nucleic 
acids, and thus to perform a structural role (Gárriz et al., 2003). 
The three commonest plant PAs, namely putrescine (Put), sper-
midine (Spd) and spermine (Spm), are now known; they protect 
salinity-stressed plants by aiding the accumulation of sugars, 
proline (Pro) and other osmolytes, and adjusting ion channels 
to maintain the plant’s internal K+ and Na+ balance. They also 
serve to increase the activity of a range of antioxidant enzymes, 
thereby improving the plant’s ability to control oxidative stress. 
The involvement of PAs in the response of higher plants to salin-
ity stress has been widely reported (Zheng et al., 2016) and 
deserves to be mentioned, however, we focus in this chapter on 
plant primary metabolism and how different abiotic stresses 
affect it.

In recent years, tremendous advances have been achieved in 
salt stress studies. Plant breeders have fostered some salt-tolerant 
lines of crops by conventional breeding; moreover, a transgenic 
approach is employed to improve crop salt tolerance and a number 
of transgenic lines have been found to be effective under control 
conditions. Metabolomics is becoming a tool to understand the 
cellular mechanism of abiotic stress and acts as a viable option 
for the biotechnological improvement of halophytes (Tang et al., 
2014). Nevertheless, the salt tolerance trait is a multigenic prop-
erty and is related to physiological, biochemical and molecular 
processes, so genetic engineering to produce salt-tolerant crops 
is limited seriously in nature (Zhu, 2003). More energy, material 
and financial resources are needed to invest in research. Only in 
this way can the mechanisms and principles be discovered and 
corresponding solutions be proposed.

Growth and Crop Production under 
Salt Stress Conditions

The effect of salt on plant establishment has been assessed in 
maize, sorghum, rice, wheat and soybean. Osmotic stress result-
ing from drought or salinized soils can be disastrous for crop 
development (Westgate and Boyer, 1985). Both stresses have a 
common but not exclusive osmotic component. Salinity gener-
ates an immediate osmotic stress followed by later ion toxicity 
after continued exposure (Carillo et al., 2011). During stress con-
ditions, plants need to maintain internal water potential below 
that of soil and maintain turgor and water uptake for growing. 
This requires an increase in osmosis, by uptake of soil solutes, 
synthesis of metabolic solutes or accommodation of the ionic bal-
ance in the vacuoles (Parvaiz and Satyawati, 2008). Growing or 
surviving in a saline soil imposes some costs: the cost of exclud-
ing salt by intracellular compartmentalization and of excreting 
it through salt glands. This cost, however, is relatively small in 
relation to that needed to synthesize organic solutes for osmotic 
adjustment (Munns, 2002).

As was mentioned before, plants have been classified as gly-
cophytes or halophytes. Most plants are glycophytes and cannot 
tolerate salt stress (Parvaiz and Satyawati, 2008). Nevertheless, 
important differences exist in salt tolerance between species. In 
most plants, higher levels of the activity of antioxidant enzymes 
are considered as salt tolerance mechanisms (Ashraf, 2009; Zhang 
et al., 2014). Indeed, previous studies have shown that within the 
same species, salt-tolerant cultivars generally have higher consti-
tutive or enhanced antioxidant enzyme activity under salt stress 
when compared with salt-sensitive cultivars. This has been dem-
onstrated in numerous plant species such as cotton (Gossypium 
herbaceum), rice and pea. Moreover, the response of plant anti-
oxidant enzymes to salinity has been shown to vary among plant 
species, tissues and subcellular localizations (Mittova et al., 2003). 
Dramatic variances are found between plant species production in 
saline versus control conditions over a prolonged period of time. 
For example, after some time in 200 mM NaCl, a salt-tolerant 
species such as sugar beet (Beta vulgaris) might have a reduction 
of only 20% in dry weight, a moderately tolerant species such as 
cotton might have a 60% reduction, and a sensitive species such 
as soybean might be dead (Greenway and Munns, 1980). In very 
salt-sensitive species, salt-specific effects can become visible after 
several days at high salinities. If the salinity is high, and if the 
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plant has a poor ability to exclude NaCl, marked injury in older 
leaves might occur within days, as found for white lupin (Lupinus 
albus) once the salinity increased above 100 mM NaCl (Munns, 
1988). Medicago sativa plants showed after 4 and 6 weeks of salt 
treatment a biomass reduction of about 40% and 50% with 150 
mM NaCl, respectively (López-Gómez et al., 2014). At first the 
growth reduction is quickly apparent, and is due to the salt outside 
the roots. It is essentially a water stress or osmotic phase, for which 
there is surprisingly little genotypic variation (Munns, 2002). The 
growth reduction is presumably regulated by hormonal signals 
coming from the roots. Then, there is a second phase of growth 
reduction, which takes time to develop, and results from internal 
injury. This internal injury is due to Na+ or Cl− (or both) accumu-
lating in transpiring leaves to excessive levels, exceeding the abil-
ity of the cells to compartmentalize these ions in the vacuole. Ions 
then build up rapidly in the cytoplasm and inhibit enzyme activity 
or they build up in the cell walls and dehydrate the cell (Flowers 
and Yeo, 1986). This process inhibits the growth of the younger 
leaves by reducing the supply of carbohydrates to the growing cells 
(Munns, 2002).

Evidence indicates that plants have two phases of growing 
response that have been shown clearly, for example, for maize 
and wheat cultivars. Two maize cultivars with two-fold differ-
ences in rates of Na+ accumulation in leaves had the same growth 
reduction for 15 days in 80 mM NaCl. Furthermore, another two 
maize cultivars, again with two-fold differences in Na+ accumu-
lation, had the same growth reduction for 4 weeks in 100 mM 
NaCl, and it was not until 8 weeks of salinity that a growth dif-
ference was clearly observed (Munns, 2002).

Differences are evident between the phenotype given by salt-
stressed maize plants versus control irrigated only with nutri-
tive solution (Henry et al., 2015). Similar results were found in 
wheat (Munns et al., 1995). Maize plants are most susceptible 
during a period of 2 weeks around the time of silking, and ker-
nel abortion is the limiting factor for yield (Boyer, 2010). Recent 
studies identify events as early as 1 day after pollination to be 
critical for determining whether the embryo will abort (Chaves 
et al., 2003). With rice, also, a clear distinction has been made 
between the initial effects of salinity, which are recoverable, and 
the long-term effects that result from the accumulation of salt in 
the expanded leaves (Yeo et al., 1991).

In general, in the first few seconds or minutes of salt stress 
exposure, plant cells lose water and shrink. Then, cells regain 
their original volume but cell elongation rates are reduced, lead-
ing to lower rates of leaf and root growth. Over a number of days, 
changes in cell elongation and cell division lead to slower leaf 
appearance and smaller final size, and leaf growth is usually 
more affected than root growth (Munns, 2002). Root ionic status 
does not increase with time, as in leaves, and they often have a 
lower Na+ and Cl– concentration than the external solution, which 
rarely happens in leaves. For example, in wheat growing in 150 
mM NaCl, Na+ in the roots was only 20–40 mM (Gorham et 
al., 1990). In plants with high salt uptake rates, the oldest leaf 
may start to show symptoms of injury. After months, differences 
between plants with high and low salt uptake rates become very 
apparent, with a large amount of leaf injury and complete death 
in some cases if the salinity level is high enough (Munns, 2002).

In maize, kernel abortion induced by osmotic stress correlates 
with reduced evapotranspiration and photosynthesis (Setter and 

Flannigan, 2001). Along with impaired photosynthesis in source 
leaves comes a reduction of seed sink strength. Abortion caused 
by osmotic stress correlates with depleted sucrose and reduced 
sugar levels, reduced sucrose degrading enzyme activity and 
transcript levels, and depletion of starch in the kernels (Henry 
et al., 2015). These events occur in a short period of time around 
pollination and can be partially prevented by stem sucrose feed-
ing (Boyer, 2010). As a result of impaired photosynthesis and 
sink strength, sugar allocation to the reproductive organs is dis-
rupted and the young embryo rapidly starves and aborts. Sugars 
not only serve as a source of carbon units and metabolic energy 
but also function as signaling molecules reporting carbon status 
within the cell (León and Sheen, 2003; Henry et al., 2015).

Seedling stage is the more vulnerable phase of durum wheat 
(Triticum durum) growth under salinity (Carillo et al., 2008). This 
species is more sensitive to salinity than bread wheat (Triticum 
aestivum) and poor yields on saline soil are partly due to the 
poor ability of durum wheat to exclude sodium (Annunziata 
et al., 2017). In particular, salinity greatly increases the levels of 
proline and glycine betaine (GB) in durum wheat (Munns, 2002; 
Carillo et al., 2008), as in other Poaceae. In many halophytes, 
leaf concentration of Pro, GB or both contributes to the osmotic 
pressure in the cell as a whole. In glycophytes, proline and GB 
have lower concentrations but, being partitioned exclusively to 
the cytoplasm, which makes up about 10% of the volume of the 
cell, they are able to determine significant osmotic pressure and 
balance the vacuolar osmotic potential (Annunziata et al., 2017).

The effect of salinity on the germination, vegetative growth 
and yield of cotton has also been reported (Ahmads et al., 2002; 
Guo et al., 2012). Cotton is classified as a salt-tolerant crop, but 
this tolerance is actually limited and varies according to the 
growth and developmental stages of the plant. Breeders have 
sought to make cotton more tolerant to salt through various meth-
ods, including traditional plant breeding and biotechnological 
approaches such as creating transgenic cotton (Chen et al., 2016). 
The growth rates of cotton plant roots and leaves decrease with 
increasing salt concentration, which may be a result of osmotic 
injury or specific ion toxicity (Meloni et al., 2001). Salt stress 
significantly reduces the growth rates in surface area, volume, 
average diameter of the cotton roots, and dry weights of roots 
and leaves (Zhang et al., 2014). This is accompanied by strong 
changes in carbohydrate metabolism owing to severe impair-
ments in the photosynthetic and respiration apparatus (Chen 
et al., 2016).

On the other hand, legumes are classified as salt-sensitive crop 
species and their productivity is particularly affected because 
nodular nitrogenase activity markedly decreases upon expo-
sure to mild saline conditions (Läuchli, 1984; López-Gómez 
et al., 2014). Salinity stress reduces seed germination, seedling 
growth, nodulation, biomass accumulation and seed yield (Essa, 
2002). López-Gómez et al. (2014) have studied M. sativa and 
determined that nitrogenase activity is strongly inhibited by 150 
mM NaCl 2 weeks after treatment initiation. The glycophyte 
Lotus tenuis (Waldst and Kit, syn. L. glaber; Kirkbride, 2006) 
is the best-adapted legume forage in the lowlands of the Buenos 
Aires Province (the most important cattle production region in 
Argentina) and is also affected by salt stress. The negative effect 
of NaCl on root length of L. tenuis is in agreement with previ-
ous results (Echeverria et al., 2008) along with important levels 
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of growth inhibition on its shoots that significantly decrease 
persistence and yield (Mazzanti et al., 1986; Paz et al., 2014). 
Singleton and Bohlool (1983) showed that nodule function was 
relatively more resistant to salt stress than plant growth. High 
soybean yields require large amounts of nitrogen (N); the least 
expensive source of N for soybean is biological fixation of atmo-
spheric N2 by the symbiotic association between plant and soil 
bacteria belonging mainly to the genera Bradyrhizobium and 
Sinorhizobium, which are collectively called soybean rhizobia. 
Rhizobia infect the roots of legumes and induce formation of 
nodules, where nitrogen fixation takes place (Baghel et al., 2016). 
Similarly to the nitrogenase activity, nodule dry weight was also 
reduced by salt treatments particularly in the case of M. sativa in 
which 35% and 50% of reduction was obtained by 100 and 150 
mM NaCl after 2 weeks (López-Gómez et al., 2014).

Owing to the high oil and protein content in its seeds, soy-
bean is an important economic dicot crop and the demand 
for it is increasing continuously. However, as a salt-sensitive 
species, the growth and development are severely affected by 
salt stress. Exploiting resistant varieties and improving salt 
tolerance of soybean, therefore, became the goal of many 
researchers (Chen et al., 2011). In mature seedlings of culti-
vated soybean (Glycine max), the water potential was reduced 
11.2 times and the relative water content dropped to 64.2% 
under 300 mM treatment. In addition, all the plants under this 
stress displayed symptoms of water loss and 30% died after the 
stress. For young seedlings the accumulation of Pro increased 
rapidly when the concentration of the NaCl reached 100 mM 
or higher. Under 300 mM, the contents of the Pro reached 
34.4 times. Previous studies on the synthesis and degradation 
of Pro have proved a close relationship between Pro and salt 
resistance. GB was another important metabolite playing an 
important role in salt resistance and its behavior was similar to 
Pro (Wu et al., 2014). The Pro content in the cotyledons of the 
4-day-old germinating soybeans increased in the plants sub-
jected to NaCl stress as well as the gamma-aminobutyric acid 
(GABA) content (Yin et al., 2015).

Plant Chemical and Physical Response to Salt Stress

An efficient response to the environment is particularly important 
for plants, as sessile organisms. This means an ability of cells to 
quickly sense the surrounding environmental signals. Systemic 
signals generated by the tissue exposed to abiotic and biotic stress 
act in the co-ordination and execution of plant stress responses 
in terms of metabolic and developmental adjustments (Chaves et 
al., 2003). Under salt and drought, these responses are triggered 
by primary osmotic stress signals, which have an impact on both 
the source of carbohydrate (photosynthesis) and the mobiliza-
tion/utilization of carbohydrate reserves (sink strength), or by 
secondary signal metabolites that generally increase or decrease 
in a transient mode. The latter include hormones (e.g. abscisic 
acid (ABA), ethylene, cytokinins), reactive oxygen species 
(ROS) and intracellular second messengers, e.g. phospholipids, 
sugars, etc. (Chaves et al., 2003). Salt stress signaling consists 
of ionic and osmotic detoxification and signaling to coordinate 
cell division and enzyme expansion. Several salt-responsive sig-
naling pathways, such as salt overly sensitive (SOS), ABA, Ca2+ 
signal transduction, protein kinase, phospholipid, ethylene and 

jasmonate acid (JA) induced signaling pathways, have been pre-
dicted (Zhang et al., 2012).

Stomata close in response to leaf turgor decline, high vapor 
pressure deficit in the atmosphere (Chaves et al., 2009) and early 
physiological events such as root-generated chemical signals. A 
close relationship is usually found between stomata conductance 
(Gs) and net CO2 assimilation (AN) (Flexas et al., 2004); photo-
synthesis rate is affected by salt stress directly due to CO2 defi-
ciency and Rubisco (RuBP) activity, and indirectly by reduced 
chlorophyll and total carotenoid content (Tang et al., 2014).

Since roots are the site of perception of salt in the environ-
ment, their responses and adaptive behavior form the first line of 
defense against stress damage (Ji et al., 2013). High concentra-
tions of NaCl outside the roots reduce the water potential and 
make it more difficult for the root to extract water (Zhang et al., 
2014). Sodium exclusion by root cells is the primary protecting 
response in plants that delays the toxic effects of high cytoplas-
mic Na+. The comparison of unidirectional Na+ uptake fluxes and 
the rates of net accumulation of Na+ in roots indicate that the vast 
majority of the Na+ taken up into the root symplast is extruded 
back to the apoplast and soil solution (Ji et al., 2013). Proper 
regulation of ion flux is necessary for cells to keep the concen-
trations of toxic ions low and to accumulate essential ions. Plant 
cells employ primary active transport, mediated by H+-ATPases 
(Yokoi et al., 2002) that create a proton-motive force that drives 
the transport of all other ions and metabolites; and a secondary 
transport, mediated by channels and co-transporters, to maintain 
characteristically high concentrations of K+ and low concentra-
tions of Na+ in the cytosol (Parvaiz and Satyawati, 2008).

The cytoplasm also accumulates low-molecular-mass com-
pounds commonly called compatible solutes that do not interfere 
with normal biochemical reactions; rather, they replace water in 
biochemical reactions. While some compatible osmolytes are 
essential elemental ions (such as K+) (Xiong et al., 2002), the 
majority are organic solutes (Zhu, 2003). However, the solutes 
that accumulate vary with the organism and even between plant 
species. A major category of organic osmotic solutes consists 
of simple sugars (mainly fructose and glucose), sugar alcohols 
(glycerol and methylated inositols) and complex sugars (treha-
lose, raffinose and fructans). Carbohydrates (glucose, fructose, 
sucrose, fructans) and starch accumulate under salt stress, play-
ing a leading role in osmoprotection, osmotic adjustment, carbon 
storage and radical scavenging (Parvaiz and Satyawati, 2008). 
Others include quaternary amino acid derivatives (proline, gly-
cine betaine, β-alanine betaine, proline betaine, tertiary amines 
1,4,5,6-tetrahydro-2-methyl-4-carboxyl pyrimidine) and sulfo-
nium compounds (choline O-sulfate, dimethyl sulfonium propio-
nate) (Bohnert and Jensen, 1996; Yokoi et al., 2002).

Under mild stress, a small decline in stomata conductance 
may have protective effects against stress, by allowing plants to 
save water and improving plant water-use efficiency. The result 
of closing stomata is the reduction of CO2 diffusion. There is 
an increasing body of evidence that shows gm (internal leaf con-
ductance to CO2 diffusion) decreases in response to drought 
and salinity (Flexas et al., 2004). These changes in mesophyll 
conductance may be linked to physical alterations in the struc-
ture of the intercellular spaces due to leaf shrinkage or to altera-
tions in the biochemistry (bicarbonate to CO2 conversion) and/
or membrane permeability (aquaporins) (Chaves et al., 2009). 
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The cell cortex is a specialized layer of the cytoplasm underlying 
the plasma-membrane that is composed of a network of micro-
tubules and actin filaments. Cortical microtubules are highly 
dynamic and remodeled by numerous stimuli. Salt stress induces 
dynamic cytoskeletal changes, with initial depolymerization of 
microtubules at the onset of stress followed by repolymeriza-
tion. Both depolymerization and reorganization of the cortical 
microtubules are important for the plant’s ability to withstand 
salt stress (Ji et al., 2013).

Changes in leaf biochemistry that result in down-regulation 
of the photosynthetic metabolism may occur in response to 
lowered carbon substrate under prolonged stresses (Flexas et 
al., 2006). A deactivation of the carboxylating enzyme RuBP 
by low intercellular CO2 has been observed along with other 
important photosynthetic proteins that are down-regulated 
by different mechanisms (carbonylation, phosphorylation/
dephosphorylation and redox changes in thiol groups). These 
salt-induced alterations may induce great disturbances in pho-
tochemical activity, decreasing the growth and increasing salt 
plant sensitivity (Henry et al., 2015; Silveira and Carvalho, 
2016). There is a large amount of data on initial RuBP activ-
ity and only one study in which nitrate reductase activity was 
followed concomitantly with Gs during a drought cycle. Even 
so, it seems clear that both enzymes share a common pattern 
on regulation with decreasing Gs. The fact that initial RuBP 
activity remains unaffected from maximum Gs down to 0.1 
mol H2O m−2 s−2 implies that within this range, photosynthe-
sis is not impaired by the carboxylation capacity (Flexas et al., 
2004). Early biochemical effects that involve alterations in pho-
tophosphorylation (a decrease in the amount of ATP leading to 
a decreased regeneration of Rubisco) have also been described 
(Tezara et al., 1999) and seem to be dependent on species show-
ing different thresholds for metabolic down-regulation (Lawlor 
and Cornic, 2002).

Under salt stress, metabolic limitations of photosynthesis 
resulting from increased concentrations of Na+ and Cl−2 in the 
leaf tissue (in general above 250 mM) do occur (Munns et al., 
2006). As previously pointed out, the fast changes in gene expres-
sion following stress imposition that have been observed suggest 
that alterations in metabolism start very early. Although its role 
is not totally clear yet, photorespiration may also be involved in 
protecting the photosynthetic apparatus against light damage as 
suggested by its increase under drought observed in several spe-
cies. Photorespiratory-produced hydroxide peroxide (H2O2) may 
also be responsible for signaling and acclimation under restricted 
CO2 availability (Noctor et al., 2002). Several lines of evidence 
suggest that stomatal closure in moderately salt-stressed leaves 
leads to enhanced rates of photorespiration. The following 
parameters, all indicative of higher rates of photorespiration, 
have been shown to increase: the CO2 compensation point, the 
light to dark ratio of CO2 production, the stimulation of photo-
synthesis by lowering the O2 concentration, the activity of glyco-
late oxidase and the formation of photorespiratory metabolites, 
such as glycine, serine and glycolate. The maintenance of consid-
erable rates of electron transport in CO2-free air also indicates a 
significant occurrence of photorespiration in salt-stressed leaves. 
In addition to sustained rates of electron transport due to photo-
respiration, the formation of zeaxanthin (one of the most com-
mon carotenoid alcohols found in nature) also mitigates against 

photo inhibitory damage, although this protection by zeaxanthin 
is not complete in high light (Wingler et al., 2000).

Salt-tolerant plants can not only regulate ion and water move-
ments more efficiently but should also have a better antioxi-
dant system for effective removal of ROS (Noctor et al., 2002). 
Molecular oxygen in its ground state, triplet oxygen, is essen-
tial to life on earth. It is a relatively stable molecule that does 
not directly cause damage to living cells. However, when triplet 
oxygen receives extra energy or electrons, it generates a variety 
of ROS that will cause oxidative damage to various compo-
nents of living cells including lipids, proteins and nucleic acids 
(Abogadallah, 2010). Salt stress causes excessive generation of 
ROS: singlet oxygen (1O2), hydrogen peroxide (H2O2), superox-
ide anions (O−2) and hydroxyl radicals (OH•). To mitigate the oxi-
dative damage initiated by ROS formed under salt stress, plants 
possess a complex antioxidant system, including non-enzymatic 
antioxidants such as ascorbic acid, glutathione, tocopherols and 
carotenoids; antioxidant enzymes such as superoxide dismutase, 
catalase, glutathione peroxidase and enzymes of the so-called 
ascorbate-glutathione cycle, including ascorbate peroxidase 
and glutathione reductase (Zhang et al., 2014). Plants produce 
ROS under normal conditions essentially from photosynthesis, 
photorespiration and respiration. The most common ROS gen-
erated under normal conditions are O−2 and H2O2 perhaps as a 
result of electron leakage from the photosynthetic and respira-
tory electron transport chains to oxygen. Another source of ROS 
(H2O2) is photorespiration resulting from the oxygenase activity 
of RuBP. Rates of photorespiration are basically controlled by 
the ratio of [CO2] to [O2] and temperature. In C3 plants, photo-
respiration constitutes about 20%–30% of photosynthesis under 
the current atmospheric conditions at 25°C. In contrast, C4 plants 
show lower rates of photorespiration (3.5%–6% of photosynthe-
sis) under various environmental conditions due to their CO2 
concentrating mechanism. The role of ROS detoxification under 
salt stress may have resulted at least in part from (1) the tech-
nical inability to determine the major sources(s) of ROS under 
salt stress and therefore the appropriate antioxidant enzyme 
required and (2) the expectation that ROS scavenging enzymes, 
particularly catalases and peroxidases, perform similar functions 
(Abogadallah, 2010).

Salinity can affect growth in a number of ways. The first phase 
of the growth response is due to the osmotic effect of the salt 
in the soil solution and produces a suite of effects identical to 
those of water stress caused by drought. Later, there may be an 
additional effect on growth; if excessive amounts of salt enter the 
plant they will eventually rise to toxic levels in the older transpir-
ing leaves, causing premature senescence. This will reduce the 
amount of assimilate that the plant can produce, and a reduction 
in assimilate transported to the growing tissues may further limit 
growth. This is the second phase of the growth response and is 
the phase that clearly separates species and genotypes that differ 
in the ability to tolerate saline soil (Munns, 2002). In summary, 
in order to guarantee survival under such detrimental circum-
stances, plants have evolved a series of biochemical and molecu-
lar processes to acclimatize themselves to the environment (Yan 
et al., 2013). The specific biochemical strategy contains: (1) ion 
regulation and compartmentalization, (2) induced biosynthesis 
of compatible solutes, (3) induction of antioxidant enzymes, (4) 
induction of plant hormones and (5) changes in photosynthetic 
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pathway. The molecular mechanism includes: (1) the salt overly 
sensitive (SOS) pathway for ion homeostasis, (2) the protein 
kinase pathway for stress signaling, (3) the phytohormone sig-
naling pathway under high salt stress and (4) the associated genes 
encoding salt-stress proteins, such as genes for photosynthetic 
enzymes, synthesis of compatible solutes, vacuolar-sequestering 
enzymes and for radical-scavenging enzymes (Tang et al., 2014).

The accumulated knowledge on physiological, cellular and 
molecular responses of plants to drought and salinity, including 
the signaling events occurring under both stresses, is already per-
mitting great progress in crop management and breeding (Chaves 
et al., 2009). Some improvement in plant stress tolerance has been 
achieved by introducing stress-inducible genes into some model 
plants. To further understand the complexity of plant response 
to drought and salt, including the effects on photosynthesis, is 
important to strengthen multilevel genomics and physiological 
studies, covering different intensity and timing of imposition of 
the stresses in genotypes with different sensitivity to stress.

Cold Stress

Effect of Cold Stress on Primary Plant Metabolism

Climatic changes affect the normal performance of the plant. 
Low temperatures cause damage in different physiological stages 
(seedling, reproductive stage and grain filling), resulting in a 
reduction in crop yield. Low temperatures are a major environ-
mental factor limiting the productivity and the geographic areas 
where agriculture can be developed.

Changes in environmental conditions make plants reprogramme 
metabolic fluxes because cold temperatures produce high meta-
bolic requirements to maintain normal physiological processes. 
Chilling treatments of sensitive tissues increases the activity of 
invertase, catalase, pyruvate decarboxylase, glucose-6-phos-
phate dehydrogenase and phosphoenolpyruvate carboxykinase. 
Likewise, decreases have been observed in a number of systems 
including malate dehydrogenase and amylase (Lyon, 1973).

Plants that have evolved with mechanisms of tolerance and 
adaptation to cold have C3 type photosynthesis and rapidly mobi-
lize the reserves stored. Moreover, changes in starch metabolism 
and raffinose family oligosaccharide synthesis are all partici-
pants in the global response to cold stress (Janska et al., 2010).

Accumulations of soluble sugars from the hydrolysis of starch 
(Chen et al., 2014) and their roles in stabilizing biological components, 
particularly for raffinose family oligosaccharides (RFO) (Tarkowski 
and Van den Ende, 2015), are much-studied processes in plant physi-
ology to understand the effects of cold and cold acclimation.

It has been reported that the accumulation of galactinol assim-
ilates such as glucose, fructose and sucrose, as well as changes in 
the biosynthesis of protein lipids, are adopted strategies for cold 
stress tolerance in plants; these act as cryoprotective molecules 
(Rodziewicz et al., 2014).

In C4 plants such as maize (Zea mays), the leaf structure mini-
mizes photorespiration, which is a major source of ROS in C3 
plants (Foyer, 2002.)

Changes in environmental conditions such as cold tempera-
tures associated with light energy result in an imbalance between 
the light energy absorbed through photochemistry versus the 

energy utilized through metabolism, which reflects the relative 
reduction state of the photosystem, generating ROS. This acts 
as a signal to influence the nuclear expression of a specific cold-
acclimation gene (Huner et al., 1998).

Photosynthesis and Carbon Metabolism

Several authors have shown that the rate of photosynthesis 
decreases in higher plants during exposure under low tempera-
tures. This reduction is due to stomatal closure and the consequent 
disability for CO2 fixation. On the other hand, cold temperatures 
bring about photoinhibition of photosystem II (PSII) caused by 
the enhanced production of reactive oxygen species damaging 
the photosynthetic machine.

The key enzyme for CO2 incorporation is ribulose-1,5-bisphos-
phate carboxylase/oxygenase (RuBP). It has been postulated that 
in seedlings subjected to cold, large RuBP subunits and RuBP-
binding protein were downregulated, which may suggest chloro-
plast damage (Rodziewicz et al., 2014). Furthermore, it has been 
shown in rice (Oryza sativa) seedlings that synthesis of RuBP is 
drastically reduced after cold exposure (Hahn and Walbot, 1989). 
In wheat (Triticum aestivum) exposed to prolonged cold, stress 
fragmentation of RuBP was also evidenced in proteomics profile; 
it was suggested that RuBP proteolysis causes sugar accumula-
tion during cold exposure (Rinalducci et al., 2011).

Regardless of the phenological state of the plant (vegetative 
or reproductive), cold-sensitive wheat is affected as photosystem 
proteins and protein related to electron transport are down-reg-
ulated, causing alterations in the flow of electrons in the chlo-
roplast (Rinalducci et al., 2011; Xu et al., 2013). These proteins 
were enhanced in cold-tolerant wheat (Xu et al., 2013).

However, in rice seedlings, the proteins related to the generation 
of energy and sugar biosynthesis are activated under conditions of 
cold temperatures (Makoto Hashimoto and Komatsu, 2007).

The transcriptomics profile of rice seedling reveals that the 
genes involved in photosynthetic processes PSI and PSII were 
down-regulated (Kyonoshin Maruyama et al., 2014). RNA 
sequencing studies in the legume Lotus japonicus subjected to 
growth at low temperatures also show down-regulation in genes 
corresponding to energy metabolism that affect the photosyn-
thetic process and chloroplast development (Calzadilla et al., 
2016). In soybean (Glycine max), comparative proteomic analysis 
of seedling leaves of cold-tolerant and -sensitive cultivars indi-
cated that cold stress also affects photosystem proteins, indicat-
ing the tolerance is caused by less energy depletion in the tolerant 
cultivar (Tian et al., 2015). The same result was found in maize 
seedling where a proteomics profile based in i-TRAQ revealed 
which proteins are involved in photosynthesis; light harvesting 
and light reaction are down-regulated (Wang et al., 2016).

On the other hand, the opposite results were obtained in cold-
tolerant soybean seed germinates exposed to 4°C, where the pro-
teomic profile revealed an increase in most proteins linked to 
energy metabolism (Cheng et al., 2010).

The Role of Carbohydrates in Response to Cold Stress

Plants produce biochemical changes in response to low tem-
peratures as a mechanism of adaptation and defense. A transi-
tion occurs when the metabolism of starch is directed towards 
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a metabolism aimed at accumulating oligosaccharides as cryo-
protectants giving an osmotic adjustment response (Janska et al., 
2010; Beck et al., 2007; Xiong and Zhu, 2002; Guy et al., 1992).

It could be said that this increase in the amount of sucrose, like 
a storage carbohydrate, is because it can be easily remobilized 
depending on the metabolic needs under stress conditions (Guy 
et al., 1992).

In wheat plants, seedling and reproductive stage exposed to 
chilling showed an increase in soluble carbohydrates (Savitch 
et al., 2000; Vargas et al., 2007; Rinalducci et al., 2011; Xu et al., 
2013), especially sucrose, and an increase in the capacity for 
sucrose utilization through the biosynthesis of fructans, accom-
panied by an induction of the activity of the enzyme invertase, 
exhibiting a regulation mediated by free sugars in response to 
the cold (Savitch et al., 2000; Vargas et al., 2007). The same reg-
ulation was observed in legume nodules of Lotus japonicus in 
non-stressing conditions, indicating a possible role of invertases 
in producing hexoses for starch production when the metabolic 
requirements are high (Flemetakis et al., 2006).

RNA sequencing in seeds of tolerant indica rice detected 
high expression in enzymes involved in the synthesis of sucrose 
and breakdown of polysaccharides to generate simple sug-
ars, such as glucose, compared to cold-sensitive indica rice 
(Dametto et al., 2015).

Comparisons between two soybean cultivars (tolerant and sen-
sitive) in seedling stage reveal that cold stress affects the total 
amount of soluble carbohydrates, decreasing in both cultivars. At 
the same time, the protein profiles show a reduction in pentoses 
phosphate and glycolysis pathways for both cultivars (Tian et al., 
2015). Other reports in seed soybean showed that proteins asso-
ciated with carbohydrate enhanced starch metabolism as well as 
increasing the granule-bound starch gene (Cheng et al., 2010). In 
Lotus japonicus those genes of starch and sucrose metabolism 
also showed up-regulation (Calzadilla et al., 2016). In maize, 
most of the proteins associated with carbohydrate metabolism 
were accumulated after the chilling stress (Wang et al., 2016).

Metabolome analyses in rice seedling treated under low tem-
perature revealed that levels of monosaccharides increased, while 
transcriptomics analyses indicated that several genes encoding 
enzymes involved in starch degradation, sucrose metabolism 
and the glyoxylate cycle are upregulated and that these changes 
are correlated with the accumulation of glucose, fructose and 
sucrose. In particular, high expression levels of genes encoding 
isocitrate lyase and malate synthase in the glyoxylate cycle corre-
late with increased glucose levels (Maruyama et al., 2014). In the 
reproductive stage of rice (booting stage) the starch and sucrose 
contents in the leaf blades and stems after panicle initiation did 
not undergo significant changes and carbon availability from 
source tissues is unlikely to affect chilling sensitivity in spikelet 
at the booting stage (Suzuki et al., 2015). Different results were 
reported in three maize inbred lines where a decrease in sucrose 
and glucose levels was found when analyzed by metabolism pro-
file (Sun et al., 2016).

In another important forage legume, when two cultivars 
(Medicago sativa and Medicago falcata) were compared, both 
showed sugar accumulation (sucrose, galactinol and raffinose), 
although M. sativa displaying show accumulation of sugars. In 
M. falcata all sugars accumulated rapidly and stayed at high lev-
els except for raffinose (Zhuo et al., 2013).

The raffinose family oligosaccharides (RFOs) are synthesized 
from sucrose by the subsequent addition of activated galactinol 
moieties donated by galactinol (ElSayed et al., 2014). Raffinose 
was accumulated in leaves accompanied by an increase in galac-
tinol (Saito et al., 2011). It has also been observed that levels of 
transcripts of raffinose synthase decreased under cold stress but 
are increased under dehydration conditions (Maruyama et al., 
2014).

Microarray analysis of rice plant at booting stage revealed that 
cold treatments during vegetative growth provoked up-regulation 
of a raffinose synthase gene, showing the same pattern as the 
heat shock protein genes (Suzuki et al., 2015). It has been pro-
posed that higher levels of raffinose synthase, as well as raffi-
nose, can assist in osmotic adjustments as well as in membrane 
and protein stabilization and to protect plants from oxidative 
stress caused by cold stress (Suzuki et al., 2015; ElSayed et al., 
2014). Furthermore, there is evidence that in some plant species, 
change in RFOs is part of a mechanism for carbon storage rather 
than protection against environmental changes (ElSayed et al., 
2014). Transcriptional up-regulation of the raffinose oligosac-
charide pathway results in accumulation of monosaccharides and 
disaccharides, including glucose, fructose, sucrose, galactinol 
and raffinose (Jansko et al., 2010).

Higher levels of the transcript of the galactinol synthase 
encoded gene (MfGolS1) were induced and maintained in M. 
falcata than in M. sativa during cold acclimation, in accordance 
with the accumulation of sugars and the differential cold toler-
ance between M. falcata and M. sativa (Zhuo et al., 2013).

Galactinol synthase is the enzyme that catalyzes the first step 
of RFOs. Transgenic tobacco that overexpresses the exogenous 
gene MfGolS1 of M. falcata turned out to be more tolerant to 
freezing and chilling (Zhuo et al., 2013).

Trehalose is another nonreducing disaccharide that serves as a 
protector against stress. Trehalose synthesized via a phosphory-
lated intermediate, trehalose 6-phosphate (Tre6P), has been a 
reporter that the gene of trehalose-6-phosphate (TPS) increases 
in freezing stress (Song et al., 2016a). There is a strong correla-
tion between sucrose and Tre6P. Parallel changes in their levels 
indicate that synthesis and degradation of Tre6P may be regu-
lated by sucrose (Lunn et al., 2014). The demand for starch is 
regulated by sucrose-dependent changes in Tre6P that modulate 
the rate of starch breakdown according to the demand for sucrose 
(Lunn et al., 2014).

An accumulation of trehalose may act as a regulator of stress, 
giving greater tolerance under low temperatures. Transgenic 
rice plants which contained the exogenous gene trehalose bio-
synthetic (otsA and otsB) from Escherichia coli exhibited 
constant plant growth, less photo-oxidative damage and more 
favorable mineral balance under low-temperature stress condi-
tions (Garg et al., 2002).

Fatty Acid Metabolism

Fatty acids are components of cellular membrane, thylakoid 
membrane and cutin waxes; trienoic fatty acids (TAs), hexadeca-
trienoic acid (16:3) and linolenic acid (18:3) are the major poly-
unsaturated fatty acid species in membrane lipids (Upchurch, 
2008), and changes in their regulated plant response against 
low temperatures. Cold temperatures cause damage to the lipid 
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membrane; these oxidative lipid injuries are generated by ROS 
resulting in lipid peroxidation and changes in lipid compositions.

In physiological conditions, the membrane lipid is in the liquid 
crystal phase, but under low-temperature stress, it is transformed 
from the liquid phase into the gel phase, thus increasing the 
permeability of the membrane (Lyons, 1973; Chen et al., 2014; 
Tarkowski and Van den Ende, 2015). This arrangement of mem-
brane fluidity, with the transition to gel phase, is accompanied by 
an increase in the proportion of unsaturated fatty acids (Beck et 
al., 2007; Janska et al., 2010; Chen et al., 2014).

Releasing α-linolenic acid (18:3) is a way of modulating the 
membrane flow, in chloroplast saturated phosphatidylglycerol 
(PG), with saturated fatty acids (16:0, 18:0) playing a key role 
in acclimatization of plants under chilling. Increased TAs in the 
plasma membrane enhance low-temperature tolerance in plants 
during the early growth stage (Iba, 2002; Upchurch, 2008).

The chloroplast is a sensitive target of low temperatures; dif-
ferences between lipid compositions in chloroplasts may be the 
cause of plant sensitivity or tolerance to cold stress. The content 
of PGs in chloroplasts is 16:0 or 16:1; in tolerant plants the levels 
of 16:0, 16:1 and 18:1 are less than in sensitive plants (Iba, 2002).

Alfalfa studies comparing tolerant and cold-sensitive variet-
ies showed that low-temperature-resistant varieties contained a 
higher percentage of polyunsaturated fatty acids in chloroplast 
membranes (Peoples et al., 1978).

Willemot (1977) described that saturated fatty acids at low tem-
perature in wheat are not related to frost hardiness. Furthermore, 
in alfalfa it has been shown that linoleic acid accumulates at 
low temperature while wheat accumulates linolenic acid. In rice 
there is a positive relationship between the unsaturated fatty acid 
composition of the chloroplast membrane and the photosynthetic 
tolerance to chilling (Zhu et al., 2007).

A metabolome study in maize showed that triacylglycerides 
and diacylglycerides produced from the glycerolipid metabolic 
pathway significantly decreased when plant seedlings were 
exposed to low temperatures (Sun et al., 2016). In soybean, pro-
tein profiles comparing a sensitive and tolerant variety show that 
the low-temperature-tolerant cultivar improves the biosynthesis 
of fatty acids (Tian et al., 2015).

RNA sequencing in rice and lotus reveals that in sensitive 
plants there is a down-regulated gene in the metabolic lipid path-
way (Dametto et al., 2015; Calzadilla et al., 2016). This indicates 
this is a generalized response in plants against cold stress where 
a regulation metabolic process exists related to unsaturated fatty 
acid accumulation.

Summary

There is a general response for plants against cold stress. The 
metabolic changes focus on counteracting the oxidative stress 
in the chloroplast and lowering the photoinhibition, particularly 
regulating the photosynthesis and carbohydrate metabolism.

The biochemical response produced by cold damage is gener-
ally associated with the accumulation of unsaturated fatty acids in 
order to decrease lipid peroxidation. Sugar accumulation, seems 
to be a response to support growth under temperature stress, act-
ing like photoprotective molecules, lowering levels of ROS, and 
like osmotic molecules, regulating the osmotic imbalance caused 
by the cold. This mechanism is summarized in Figure 1.1.

As a strategy for future breeding projects it is thought that a 
plant phenotype that is more energy efficient at the level of chlo-
roplast would lower the levels of ROS produced by the cold and 
the consequent photoinhibition. This would make the plant more 
metabolically efficient where the biochemical processes are 
geared towards growth rather than repair of damage, resulting in 
a greater grain yield in crop species.

Water Deficit

Plants Water Balance

Plant water balance explains the behavior of plants in terms of 
how they control the hydration of their cells, which has important 
implications in the physiological and metabolic processes that 
determine the quantity and quality of plant growth (Passioura 
et al., 2010). The plant water balance is determined by the ratio 
between the fraction of water lost in evaporation (transpiration) 
to the atmosphere and its absorption from the soil. When tran-
spiration exceeds absorption, the relative water content (RWC) 
and the cellular volume decrease, determining the loss of cell 
turgor and at the same time increasing the solute levels in the 
cell, so osmotic potential (π) and water potential (ψ) fall (Lawlor 
and Cornic, 2002). This situation could be modified by osmotic 
adjustment (OA) in species that have such a defense mechanism. 
OA has been and is well established as a major regulator of turgor 
and stomata conductance (Gs) in drought (Blum, 2016). Turner 
and Jones (1980) indicate that OA was effective in sustaining tur-
gor, RWC and Gs at low leaf water potential in sorghum. A lower 
state of cell turgor and RWC causes slow growth and Gs. In this 
context two parameters describe the water status of plants: RWC 
and ψ (Nobel, 2009). RWC is a measure of relative change in cell 
volume; ψ is the result of cell turgor and π, and thus depends both 
on solute concentration and cell wall rigidity and does not relate 
directly to cell volume (Kaiser, 1987; Jones, 2007). OA together 
with cell wall rigidity regulate turgor under dehydration, where 
the former is generally more effective and prevalent than the lat-
ter (Bartlett et al., 2012). Small cells are generally more condu-
cive to OA than large ones. It is recognized that turgor, Gs and 
growth can be regulated by hydraulic and/or hormonal signals, 
directly or indirectly (Blum, 2016).

Plant Strategies to Mitigate 
Damage from Dehydration

From an agricultural perspective, drought is ultimately defined 
in terms of its effects on yield, since this is the relevant issue 
when addressing the improvement of crop production under 
water-limited environments (Passioura, 2007). Most plants that 
are grown in field conditions experience water stress during part 
of their growing cycle, especially at midday and early afternoon 
in the summer or due to the scarcity or absence of rain for long 
periods of time. This threat affects phenology, carbon fixation, 
distribution of assimilates and plant reproduction (Fuad-Hassan 
et al., 2008); for example, legumes are highly sensitive to water 
deficit especially during the reproductive period, flowering and 
pod filling (Araújo et al., 2015). Consequently, the timing of 
water deficits during the season (e.g. sowing, crop establishment, 
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flowering or grain filling) may have a much larger impact on 
yield than the intensity of drought per se (Pinheiro and Chaves, 
2010). In this way, to maintain productivity, agriculture uses 
about 70% of water resources in the world. It is estimated that, 
by 2030, the requirement for irrigation will increase by 14% 
(FAO, 2009).

Mesophyte species that experience water stress modify or 
adjust their cell metabolism to the new conditions imposed by 
stress. When the regulation is inadequate and the metabolism 
is not adjusted to maintain its functions, they trigger a series 
of harmful effects that can cause the death of the vegetable. 
Regulation is strongly influenced by species and environment. 
Metabolic changes involve biochemical, physiological and 
structural modifications (Passioura, 2007). With some excep-
tions, the lack of water of tissues below a critical level is accom-
panied by irreversible changes in the structure and finally, the 
death of the plant (Azcón-Bieto and Talón, 2008). In nature, 
plants can either be subjected to slowly developing water short-
age (days, weeks or months) or face short-term water deficits 
(hours to days). In the case of slow water deficits, plants can 
either escape dehydration by shortening their life cycle or opti-
mize their resource gain in the long term through acclimation 
responses. In some modern maize hybrids the anthesis-silking 
interval under drought has become shorter and selection has 
possibly led to an increase in the growth of spikelets (Bänziger 
and Cooper, 2001). In the case of rapid dehydration, plants 
react to minimizing water loss or exhibiting metabolic pro-
tection (induced or constitutive) against the damaging effects 

of dehydration and co-developing oxidative stress (Chaves et 
al., 2003). Fast and slow desiccation can have totally differ-
ent results in terms of physiological response or adaptation 
(McDonald and Davies, 1996), but the importance of time in 
shaping plant response may change dramatically according to 
genotype and environment (Chaves et al., 2003).

Plants can strengthen their response to a drought by avoiding 
tissue dehydration, maintaining the potential water as high as pos-
sible or by tolerating low tissue water potential using metabolic 
strategies. Although many genes are induced by water deficit, the 
molecular functions of all these are not known. In addition, the 
impact of a change in gene expression of a gene with a known 
function, such as an enzymatic function, on cellular homeosta-
sis may not be exactly understood (Bray, 2007). Dehydration 
avoidance is associated with a variety of adaptive traits involv-
ing minimizing water loss and maximizing water uptake. Water 
loss is minimized by density or regulation stomatal (Bell et al., 
2007), by reducing light absorbance or by decreasing leaf area 
due to less cell division and expansion rates in leaves. One of the 
earliest water-saving mechanisms, present in a great majority of 
plants, is reduced leaf growth (Aguirrezábal et al., 2006) or the 
earlier senescence of older leaves in the case of prolonged stress 
(Pinheiro and Chaves, 2010). This reduction in foliage dimen-
sion or lower stomata density leads to a decreased transpiration 
area (Quan et al., 2016). Water uptake is maximized by adjust-
ing the growth pattern to increase growth of roots. This is the 
main resource to maximize water absorption. This response is 
mediated by hormones: abscisic acid (ABA), ethylene and their 

FIGURE 1.1 Schematic representation of how metabolic routes vary in response to cold.
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interactions (Wilkinson and Davies, 2002). Changes in the root/
shoot ratio as well as temporary accumulation of reserves in the 
stem occur in several species under water deficit (Chaves et al., 
2003). As the key process of primary metabolism, photosyn-
thesis plays a central role in plant performance under drought 
(Pinheiro and Chaves, 2010). The decline observed in leaf net 
carbon assimilation (A) as a result of plant water deficits is fol-
lowed by an alteration and partitioning of the photo-assimilates 
at the whole plant level, corresponding in general to an increase 
in the root/shoot ratio (Sharp, 2002).

Experience from drought-resistant cereal cultivation during a 
century of scientific breeding clearly indicates that drought resis-
tance in crop plants under stress is mainly derived from their 
ability to sustain tissue hydration during drought (i.e. dehydra-
tion avoidance), rather than an ability to sustain biological func-
tion when tissues are dehydrated (i.e. dehydration tolerance) 
(Araus et al., 2012).

Response Mechanisms That Take Place in Leaves

In order to avoid excessive water loss in times of drought, regula-
tion of stomata aperture together with the reduction of the leaf 
area are the immediate responses of plants, which could result in 
a dehydration cell that would produce xylem cavitation, causing 
plant death (Comstok, 2002). However, a stomatal aperture is 
essential in leaf cooling by latent heat exchange, and this charac-
teristic is an objective of selection in plant breeding (Lu et al., 
1997). For example, many species have been classified as isohy-
dric or anisohydric depending on the sensitivity of stomata to soil 
dehydration. Isohydric plants are those that close their stomata 
when they sense a drop in soil water potential or an increase in 
atmospheric demand. On the other hand, anisohydric plants con-
tinue to transpire even when soil water content diminishes, 
because these plants are keeping their stomata open longer 
(Tardieu and Simonneau, 1998). The different response of sto-
mata to water scarcity is also associated with different root/shoot 
ratios, with the anisohydric stomatal behavior often being associ-
ated with larger root systems and high capacity for osmoregula-
tion that supports water uptake until soil water content is low. 
Osmoregulation requires a dehydration signal to be developed, 
more likely to take place in aniso- than in isohydric plants. The 
anisohydric strategy allows a closer match between water avail-
ability and consumption, with a positive impact on season growth 
(Chaves et al., 2016). Regardless of the mechanism of perception 
and signaling that causes stomatal closure, many plants show a 
tendency to increase water use efficiency (WUE) when the stress 
is moderate as a result of a non-linear relationship between carbon 
assimilation and Gs, by which the plant restricts the loss of water 
without excessively affecting photosynthesis (Blum, 2005; Taiz 
and Zeiger, 2003). When comparing C3 and C4 species it is appar-
ent that C4 plants exhibit higher WUE (A/E ratio) due to higher A 
and lower transpiration (E). In warm regions, where C4 species 
evolved, photorespiration is stimulated considerably, as well as 
the demand for transpiration for cooling. By increasing CO2 
around the carboxylating enzyme Rubisco (RuBP), C4 plants 
greatly enhanced carboxylation efficiency and were able to inhibit 
photorespiration (Sage, 2004). By producing smaller stomata den-
sity or reducing stomata aperture plants will function at low sto-
mata conductance (Gs) and have lower E (Chaves et al., 2016). 

However, in this case, the CO2 concentration at the RuBP site in 
the mesophyll cells is limited (Perdomo et al., 2017). In this sense, 
Perdomo et al. (2017) observed that the limitations to photosyn-
thesis under drought were mainly caused by a stomata closure 
(lower Gs) and increased leaf resistance to CO2 transport from the 
atmosphere to the site of carboxylation (diffusive limitations) in 
C3 and C4 species. Conversely, under the combination of water 
deficit and heat stress, biochemical limitations have been observed 
with decreased RuBP activation and impaired ATP synthesis, 
which is due to a decrease in electron transport. Experimental 
studies on CO2 assimilation of mesophytic C3 plants under water 
stress revealed a decreased relative water content (RWC), actual 
rate of A and potential rate (Apot). In this way, there are two gen-
eral types of relation of Apot to RWC, which are called Type 1 and 
Type 2. Type 1 has two main phases. As RWC decreases from 
100% to 75%, Apot is unaffected, but decreasing Gs results in 
smaller A, and lower CO2 concentration inside the leaf (Ci) and in 
the chloroplast (Cc), the latter falling possibly to the compensation 
point. Below 75% RWC, there is metabolic inhibition of Apot, 
inhibition of A then being partly reversible by elevated CO2; Gs 
regulates A progressively less, and Ci and CO2 compensation 
points rise. In the Type 2 response, Apot decreases progressively at 
RWC 100% to 75%, with A being progressively less restored to 
the unstressed value by elevated CO2. Decreased Gs leads to a 
lower Ci and Cc but they probably do not reach compensation 
point: Gs becomes progressively less important and metabolic 
limitations more important as RWC falls (Lawlor and Cornic, 
2002). The primary effect of low RWC on Apot is most probably 
caused by limited RuBP synthesis, RuBP activity or activation 
state, as a result of decreased ATP synthesis, either through inhi-
bition of coupling factor activity or amount due to increased ion 
concentration or impaired activation of RuBP by Rubisco activase 
(Perdomo et al., 2017). Electron transport is maintained (but 
down-regulated) over a wide range of RWC (Sage et al., 2008; 
Taylor et al., 2011). Metabolic imbalance results in amino acid 
accumulation and decreased protein synthesis. These conditions 
profoundly affect cell functions and ultimately cause an excess of 
radiant energy that is not used for photosynthesis and that the 
plant must eliminate in order to avoid the overproduction of reac-
tive chemical species that potentially can produce oxidative dam-
ages that would compromise the photosynthetic (Chaves et al., 
2003). Autotrophic organisms have direct and indirect mecha-
nisms that capture the excess of incident photons (photoreceptors, 
photochromes, neocromes, phytochromes, rhodopses and crypto-
chromes), variation of pH in the thylakoid lumen, changes in the 
oxidation-reduction state, production of reactive oxygen species 
(ROS) and accumulation of metabolites, which will induce 
changes in nuclear gene expression and gene expression in the 
plastid. These mechanisms attempt to decrease the damage 
caused by the adverse situation (Li et al., 2009). In order to avoid 
excess light, plants can reduce light absorbance by leaf rolling, a 
dense trichome layer increasing reflectance and steep leaf angles. 
They can divert absorbed light by photochemical reactions to 
other processes such as thermal dissipation (Pastenes et al., 2004; 
Baker, 2008). In fact, it is widely accepted that photosynthesis 
regulation in response to the environment is highly dynamic and 
is modulated in the short term by thermal energy dissipation. This 
increase in energy dissipation is linked (at least partially) to a par-
allel increase in photoprotective carotenoid levels. In this way, the 
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“xanthophyll cycle” plays a primordial role in the thermal dissipa-
tion process, which consists of light-dependent interconversion of 
three xanthophylls (oxygenated carotenoids): violaxanthin, anter-
axanthin and zeaxanthin. This is a cyclic reaction involving a de-
epoxidation sequence of violaxanthin di-epoxide via 
anteroxanthine mono-epoxide to form zeaxanthin (without epoxy 
groups). The cycle is regulated by light; violaxanthin is de-epoxi-
dated to anteraxanthin and zeaxanthin under conditions of high 
photon flux (or when photosynthetic activity is diminished by 
stress), while in the dark (or when the stress factor is absent), zea-
xanthin is again epoxidized to violaxanthin (Demming-Adams 
and Adams, 1996; Nelson and Yocum, 2006). Moreover, other 
processes have significant photoprotective and stabilizing func-
tions, including the antioxidant properties of vitamin E 
(α-tocopherol), a constitutive component of the lipid matrix of 
thylakoid membranes (Li et al., 2009). In species under water 
deficit, the use of absorbed light (photosynthesis or photorespira-
tion) and thermal dissipation is not sufficient to retain excess 
energy; electrons in a highly excited state are transferred to 
molecular oxygen (O2) that form the reactive oxygen species 
(ROS), such as H2O2, O2

−, HO− and 1O2. All these molecules are 
highly toxic and can cause oxidative damage to proteins, DNA 
and lipids (Miller et al., 2010). In this situation, the plant has anti-
oxidant molecules and enzymes that are in different cell compart-
ments and can scavenge ROS (superoxide dismutase, catalases, 
ascorbate-glutathione cycle such as glutathione reductase and 
ascorbate peroxidases). The antioxidant activity depends on the 
degree of severity of stress, genotype and stage of development. 
The acclimatization of plants to drought is associated with 
increased activity of antioxidant enzymes that maintain the con-
centration of ROS at relatively low levels (Signorelli et al., 2013; 
Quan et al., 2016). On the other hand, seedlings subjected to water 
deficit show nitric oxide (NO) production (Arasimowicz-Jelonek 
et al., 2009). However, when there is a deregulated synthesis or 
overproduction of NO that may have toxic physiological conse-
quences, it results in nitrosative stress due to reactive nitrogen 
species (RNS) formation. RNS are formed by the interaction of 
NO with free radicals and oxygen. RNS include NO−, nitrogen 
dioxide (NO2

−), S-nitrosothiols (SNOs) and peroxynitrite 
(ONOO−) (Airaki et al., 2011). Water stress in Lotus japonicus 
results in an increase in NO levels and reduced S-nitrosoglutathione 
reductase activity (an enzyme that maintains low levels of RNS), 
especially in roots (Signorelli et al., 2013). Under environmental 
stress, an increase in ROS and RNS levels can cause damage in 
cells, but it must be pointed out that both ROS and RNS can also 
serve as secondary messengers in signaling for the activation of 
defense responses to pathogens, abiotic stress, programmed cell 
death and development (Suzuki and Mittler, 2006; Arasimowicz-
Jelonek et al., 2009; Gill and Tuteja, 2010; Miller et al., 2010, 
Airaki et al., 2011; Signorelli et al., 2013).

Response Mechanisms That Take Place in Roots

Root systems are responsible for water and nutrient uptake and 
provide physical stability, and store nutrients and carbohydrates. 
In addition, roots may act as sensors for water deficit conditions 
and send signals to shoots above ground. It is well documented 
that species adapted to dry climatic regimes generally have 
higher root/shoot ratios and deeper root systems than species that 

are suited to humid climatic conditions (Brunner et al., 2015). 
Although the root/shoot ratio tends to increase, the biomass of 
fine roots in particular is often reduced as a consequence of 
reduced transpiration and respiration rates. The benefit, however, 
is that young roots are able to take up water more efficiently than 
older ones, and thus, root shedding and re-growth represent a 
more suitable acclimation of plants to reduced water supply if 
the plant can afford this strategy. In experiments with trees it 
was observed that whether a tree maintains old roots or sheds 
old roots and produces new ones in response to drought is deter-
mined by the benefit to cost ratio in terms of water uptake and 
carbon expenditure. Root shedding and the construction of new 
roots mean the investment of a considerable amount of energy 
in the process of root turnover (Eissenstat et al., 2000). Before 
this, plants cease growth and close the stomata to prevent water 
loss under drought conditions, which results in a simultaneous 
decrease in photosynthesis. However, maintenance respiration 
responds more slowly to drought than photosynthesis, resulting 
in a carbon deficit and forcing the plant to utilize stored carbohy-
drates. If the carbon deficit persists for a long time, carbohydrates 
will be depleted and plants will experience carbon starvation, 
resulting in plant mortality. In the roots of Robinia, Yan et al. 
(2017) observed an increase in soluble sugar but a decrease in 
starch, indicating that the roots began to utilize the starch, cre-
ating a carbon deficit in the roots. Regier et al. (2009) applied 
drought conditions to two contrasting Populus nigra clones and 
observed that the drought-adapted clone had significantly more 
starch but significantly less sucrose, glucose and fructose in the 
roots and conversely a drought-sensitive clone had a reduction 
of carbohydrate due to lower starch levels inducing degradation 
of starch to maintain root respiration. In soybean, under severe 
water deficit, there was an increase in transcripts associated with 
starch synthesis and a decrease in transcripts associated with 
starch degradation. Conversely, galactinol and raffinose synthase 
related genes were up-regulated, which might enhance osmotic 
tolerance in the root (Song et al., 2016b). In this way, the ele-
vated level of proline found in alfalfa roots indicates the ability 
to regulate water deficit stress tolerance (Rahman et al., 2016). 
Generally, a decrease in soluble sugars is observed in the branch, 
stem, bark and root tissues after rewatering due to recovery of 
tissue growth (Brunner et al., 2015; Yan et al., 2017).

Summary

Cold, drought and salinity are those environmental factors which 
affect plants in many respects and which, due to their widespread 
occurrence, cause the most fatal economic losses in agriculture. 
All three forms of abiotic stress affect the water relations of a plant 
on the cellular as well as whole plant level, causing specific as 
well as unspecific damage (Figure 1.2) and responses. The plant’s 
response to these stresses (drought, salt and cold) is through the 
response mechanisms that are raised at both molecular and cellu-
lar levels, as well as physiological and biochemical, which allow 
them to acclimate and survive stress. In general, the first step in 
switching on a molecular response in response to an environmen-
tal signal is its perception by specific receptors; these are physical 
signals (changes in the pressure of cell turgor, alterations in the 
walls and cellular volume) that are then converted to biochemical 
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signals, which are generated in response to stress (Bray, 2007). 
These include receptor-like kinases, receptor tyrosine kinases, 
G-protein coupled receptors, iontropic channel related recep-
tors, histidine kinases, nuclear hormone receptors and extra- and 
intracellular Ca2+ sensors. Ca2+ influx and histidine kinases have 
been identified in response to cold. It has been suggested that 
in Arabidopsis a heterotrimeric G-protein is involved in ABA 
response in guard cells (Xiong and Ishitani, 2006). Then, fol-
lowed by the generation of secondary messengers (inositol phos-
phates, ROS) that can modulate the intracellular Ca2+ level and 
initiate a signal transduction cascade that involves protein phos-
phorylation/dephosphorylation, where different Ca2+ sensors are 
included, a protein decodes their signals and has a Ca2+ binding 
motif, the so-called EF hand motif: calmodulins (CaMs), calci-
neurin B-like proteins (CBLs), Ca2+-dependent protein kinases 
(CDPKs), mitogen-activated protein kinase (MAPKs) and phos-
pholipid-cleaving enzymes (Shi, 2007). In salt stress, it is impor-
tant to emphasize the ion-specific signaling pathway SOS (salt 
overlay sensitive), which responds to changes of Ca2+ levels in 
cytoplasm, described in A. thaliana (Zhou et al., 2007). Finally, 
these would reach a large number of genes, enzymes, hormones, 
and metabolites. The products of these genes can participate in 
the generation of regulatory molecules such as ABA, and ethyl-
ene and salicylic acid, which in turn can initiate a secondary sig-
naling process (Xiong et al., 2002). The different environmental 
variables that determine osmotic stress constitute a complex of 
stimuli that possess different and sometimes related attributes in 

which each one of them provides particular information to the 
cells. Given this multiplicity of signals, it is expected that the 
plant possesses multiple primary sensors that perceive the signal 
of stress. The increase of Ca2+ in cytoplasm, as a result of the 
influx from apoplast or the release of intracellular compartments, 
is an early response to osmotic stress (Shi, 2007). The products 
of inducible genes to osmotic stress can be classified into two 
groups: the first group includes functional proteins (which partic-
ipate directly in the biochemical mechanisms of damage control, 
repair and acclimatization: aquaporins and some key enzymes 
of osmolytes biosynthesis, chaperones, antioxidants), whereas 
the second group comprises regulatory proteins involved in sig-
nal transduction and gene expression (e.g. transcription factors, 
protein kinases, protein phosphatases) as well as diverse effec-
tors involved in signaling (e.g. calmodulin-binding protein, SOS 
pathways; Seki et al., 2003). Hundreds of genes are induced or 
repressed under osmotic stress. Many of these stress-inducible 
genes are activated by ABA, and their products may improve 
tolerance to stress (Xiong, 2007). It is not surprising that gene 
expression is regulated by this phytohormone, although not all 
genes that are induced by stress are regulated by ABA, indicating 
the existence of several signaling pathways (Ishitani et al., 1997). 
Among the most important pathways are ABA-dependent and 
ABA-independent, which isolate and characterize the cis-reg-
ulatory elements and the transcriptional factors responsible for 
its activation (Busk and Pages, 1998). The ABA-regulated pro-
moters, called ABRE (ABA response elements), contain ACGT 

FIGURE 1.2 Similar (bold types) and dissimilar damages produced by cold, salt and drought in plant tissues.
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nucleotides as the core of their sequence and form part of the ele-
ments called G-box. More than 20 ABREs have been described 
in genes that respond to dehydration and drought, which bind 
to trans- factors regulated by ABA, such as bZIP (Kobayashi 
et al., 2008). Also, other ABA-responsive transcription factors 
known as MYBR/MYCR constitute an indirect pathway for 
ABA regulation through the R22 promoter gene. On the other 
hand, ABA-independent genes are characterized by containing a 
conserved dehydration response element (DRE, TACCGACAT) 
in their promoter region, related to gene regulation by interaction 
with an ABA-independent signaling cascade and matched by the 
gene RD29B promoter. It is a faster response route than the pre-
vious one (Table 1.1). This was discovered through studies of the 
RD29A promoter gene, which is induced by both ABA-dependent 
and independent pathways (Xiong et al., 2002; Shinozaki and 
Yamaguchi-Shinozaki, 2007). The genes that are upregulated 
by ABA (a) encode enzymes that function in the biosynthesis 

of compatible solutes that could lower leaf water potential and 
facilitate water uptake and retention, (b) can directly detoxify 
ROS (Jiang and Zhang, 2002) and (c) encode polypeptides that 
may help to restore the native structure of abnormally folded 
proteins or could promote the degradation of unfolded proteins 
that cannot be repaired (Xiong et al., 2007). Although osmotic 
stress alone can activate these stress-responsive genes, ABA can 
synergistically enhance their expression, enhancing the ability 
of the plants to respond to stress (Tuteja et al., 2011). In addi-
tion, a complex network of response involving ABA and PAs 
and/or nitric oxide (Arasimowicz-Jelonek et al., 2009) has been 
identified and observed in different species, such as Lotus tenuis 
(Espasandin et al., 2018), Coffea canephora (Marracini et al., 
2012) and Lycopersicum esculentum (Diao et al., 2017) exposed 
to salt, water and cold stress, respectively. Finally, the vegetal 
metabolism is altered, inducing biochemical and physiological 
responses that create tolerance (Figure 1.3).

TABLE 1.1

Promotors, Cis-Regulatory Elements and Transcription Factors in Response to Osmotic Stress

Promotors Cis Elements Transcription Factors Stressor

RD29A ABRE CBF/DREB1 Cold

RD29A DRE/CRT DREB2 Salt, ABA and drought

RD29B ABRE bZIP Salt and drought

RD22 MYB/MYC MYBR/MYCR Drought and ABA

FIGURE 1.3 Biochemical and physiological responses to drought, salt and cold stress in plants.
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