526010

D 102125

(Pages : 3)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, APRIL 2024

Chemistry

CHE 2C 05-GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time : Three Hours

Maximum Weightage : 30

Section A

Answer any **eight** questions. Each question carries weightage 1.

- 1. Assign Schoenflies symbol of point group for (a) Pyridine ; (b) Ethane (staggered conformation).
- 2. Generate 3×3 matrices for (a) C_4 ; (b) S_4 .
- 3. Distinguish between reducible and irreducible representations with examples.
- 4. State and explain rearrangement theorem.
- 5. Distinguish between Vanishing and Nonvanishing integrals with example.
- 6. Two vertical planes of water molecule belong to different classes of operations but the three vertical planes of ammonia belong to the same class. Why ?
- 7. State and explain Born-Oppenheimer approximation.
- 8. NO⁺ is more stable than Na but NO⁺ is less stable than CO. Why ?
- 9. Write spectroscopic term symbol for the ground. State of (a) B_2 ; (b) O_2^+ .
- 10. Explain the term 'free valence' with reference to conjugated systems.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **six** questions. Each question carries weightage 2.

- 11. List symmetry elements and operations associated wth $\rm D_{2h}.$ Classify them into different classes of operations.
- 12. Develop Gamma cart for $H_2O(C_{2v} point group)$.
- 13. State Great orthogonality theorem. What are the consequences of the theorem ? Discuss.

Turn over

526010

D 102125

14. Predict allowed electronic transitions of formal dehyde. Use C_{2v} character table :

C_{2v}	Ε	C_{2z}	σ_{vxz}	σ'_{vyz}		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	$\mathrm{R}z$	xy
B_1	1	-1	1	-1	x, Ry	xz
B_2	1	-1	-1	1	y, Rx	yz

- 15. Use HMO method to find the $P_1\left(\pi\right)$ molecular orbitals and the corresponding energies of allyl anion.
- 16. Briefly discuss sp^2 hybridization to find the composition of hybridized orbitals.
- 17. Explain with example direct product representations.
- 18. Reduce the following representation 'T' into its IR components. Use $\rm C_{2v}$ character table (Question No.14)

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries weightage 5.

19. Find IR and Raman active vibrations of CH_4 . Use Td character table :

Td	Е	$8C_3$	$3C_2$	$6S_4$	$6\sigma_{\rm d}$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
Ε	2	-1	2	0	0		$\left(2z^2-x^2-y^2,x^2-y^2 ight)$
T_1	3	0	-1	1	-1	$(\mathbf{R}x, \mathbf{R}y, \mathbf{R}z)$	
T_2	3	0	- 1	- 1	1	(x, y, z)	(xy, xz, yz)

526010

D 102125

- 20. Compare V.B. and M.O. method of bonding as applied to $\rm H_2.$ Which is found better ? Justify your answer.
- 21. What are the assumptions in HMO method ? Use the theory to find the molecular orbitals and the corresponding energies for benzene.
- 22. Discuss briefly :
 - (a) Mutual exclusion principle from group theoretical point of view.
 - (b) Correlation diagram applied to bonding.

 $(2 \times 5 = 10 \text{ weightage})$

3