D 103770

(Pages : 3)

Name.....

Reg. No.....

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MAT 2C 02-MATHEMATICS-2

(2019 Admissions Only)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum marks : 20.

- 1. Describe the set of points P whose polar coordinates (r, θ) satisfy $0 \le r \le 2$ and $0 \le \theta < r$.
- 2. Differentiate : (a) $(\tan 3x)/(1 + \sin^2 x)$; (b) $1 \csc^2 5x$.
- 3. Show that $e^x = \cosh x + \sinh x$.
- 4. Find $\int_{1}^{b} \frac{1}{x^4} dx$. What happens as *b* goes to infinity ?
- 5. State the comparison test for integrals.
- 6. Briefly explain Taylor's and Maclaurin's series.
- 7. Write down the criteria for checking whether a given subset W is a subspace of a vector space V.
- 8. Define linear independence.
- 9. State a condition for the consistency of the matrix equation AX = B.
- 10. Find the inverse of A = $\begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$.
- 11. Define the adjoint of an $n \times n$ matrix.
- 12. State Cayley Hamilton theorem.

Turn over

520337

D 103770

Section **B**

 $\mathbf{2}$

Answer any number of questions. Each question carries 5 marks. Maximum marks : 30.

- 13. Convert from cartesian to polar co-ordinates : (2, -4) ; and from polar to cartesian coordinates : $(6, -\pi/8)$.
- 14. Calculate : (a) $\frac{d}{dx}\sinh^{-1}(3x)$; and (b) $\frac{d}{dx}$ [sinh⁻¹ (3 tanh 3x)].
- 15. (a) For which values of the exponent *r* is $\int_{1}^{\infty} x^{r} dx$ convergent?
 - (b) Find $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.
- 16. Let $f(x) = \cos x$. Evaluate $\int_0^{\pi/2} \cos x \, dx$. by the method of Riemann sums, taking 10 equally spaced points : $x_0 = 0$, $x_1 = \pi/20$, $x_2 = 2\pi/20$, ..., $x_{10} = 10\pi/20 = \pi/2$ and $c_i = x_i$. Compare the answer with the actual value.
- 17. Define a vector space.
- 18. Reduce to echelon form the augmented matrix :

 $\begin{pmatrix} 2 & 6 & 1 & | & 7 \\ 1 & 2 & -1 & | & -1 \\ 5 & 7 & -4 & | & 9 \end{pmatrix}.$ 19. Find the inverse of A = $\begin{pmatrix} 2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}.$

520337

520337

D 103770

3

Section C

Answer any **one** question. The question carries 10 marks. Maximum 10 marks.

20. Describe Newton's Method for solving f(x) = 0.

Use Newton's method to find the first few approximations to a solution of the equation $x^2 = 4$, taking $x_0 = 1$.

- 21. (a) Describe Gram Schmidt Process in \mathbb{R}^2 and \mathbb{R}^3 .
 - (b) Orthonormalize $\mathbf{B} = \{u_1, u_2\}$, where $u_1 = \langle 3, 1 \rangle$, $u_2 = \langle 1, 1 \rangle$.
 - (c) Orthonormalize $u_1 = \langle 1, 1, 1 \rangle$, $u_2 = \langle 1, 2, 2 \rangle$, $u_3 = \langle 1, 1, 0 \rangle$.