D 100614

(Pages: 3)

Name.....

Reg. No.....

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 12—CALCULUS OF MULTIVARIABLE

(2019 Admissions onwards)

Time : Two Hours and a Half

Maximum Marks: 80

Section A

Questions 1—15. Answer any number of questions. Each carry 2 marks. Maximum marks 25.

1. Find the domain of the function
$$f(x, y) = \frac{\ln(x + y + 1)}{y - x}$$
.

2. Evaluate
$$\lim_{(x,y)\to(1,2)} \frac{2x^2 - 3y^3 + 4}{3 - xy}$$

- 3. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $\ln(x^2 + y^2) + yz^3 + 2x^2 = 10$.
- 4. Find the gradient of $f(x, y) = x^2 + y^2 + 1$ at the point (1, 2). Use the result to find the directional derivative of f at (1, 2) in the direction from (1, 2) to (2, 3).
- 5. Find the equation of the tangent plane to the hyperboloid $z^2 2x^2 2y^2 = 12$ at the point (1, -1, 4).
- 6. Find the critical points of $f(x, y) = -x^3 + 4xy 2y^2 + 1$.
- 7. Evaluate $\int_{0}^{2} \int_{y^2}^{4} dx dy$.
- 8. Set up a triple integral for the volume of the solid region in the first octant bounded above by the sphere $x^2 + y^2 + z^2 = 6$ and below by the parabolid $z = x^2 + y^2$.
- 9. Evaluate $\iint_{\mathbf{R}} 1 2xy^2 d\mathbf{A}$ where **R** is the region $\{(x, y) | 0 \le x \le 2, -1 \le y \le 1\}$.

Turn over

472558

D 100614

10. Find the volume of the solid S below the hemisphere $z = \sqrt{9 - x^2 - y^2}$ above the *xy* plane and inside the cylinder $x^2 + y^2 = 1$.

 $\mathbf{2}$

- 11. Find the gradient vector field \vec{F} of the function $f(x, y, z) = \frac{-K}{\sqrt{x^2 + y^2 + z^2}}$ and hence deduce that the inverse square field \vec{F} is conservative.
- 12. Find a parametric representation for the cone $x^2 + y^2 = z^2$.
- 13. State Stoke's theorem.
- 14. Using Divergence theorem evaluate $\iint_{S} \vec{F} \cdot n \, dS$ where $\vec{F} = x\hat{i} + y^{2}\hat{j} + z\hat{k}$ and S is the surface bounded by the co-ordinate planes and the plane 2x + 2y + z = 6.
- 15. Find an equation of the tangent plane to the paraboloid $\vec{r}(u,v) = u\hat{i} + v\hat{j} + (u^2 + v^2)\hat{k}$ at the point (1, 2, 5).

Section B

Questions 16–23. Answer any number of questions. Each carry 5 marks. Maximum marks 35.

- 16. Let $w = 2x^2y$ where $x = u^2 + v^2$ and $y = u^2 v^2$. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$.
- 17. The dimensions of a closed rectangular box are measured as 30 in 40 in and 60 in with a maximum error of 0.2 inches in each measurement. Using differentials find the maximum error in calculating the volume of the box.
- 18. Show that the equation of the tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at (x_0, y_0, z_0)

is
$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

19. Sketch the level curve corresponding to c = 0 for the function $f(x, y) = y - \sin x$ and find a

normal vector at the point $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$.

20. Using polar co-ordinates find the volume of the solid region bounded above by the hemisphere $z = \sqrt{16 - x^2 - y^2}$ and below by the circular region $x^2 + y^2 \le 4$.

472558

- 21. Find the surface area S of the portion of the hemisphere $f(x, y) = \sqrt{25 x^2 y^2}$ that lies above the region R bounded by the circle $x^2 + y^2 \le 9$.
- 22. Evaluate $\oint_C (y^2 + \tan x) dx + (x^3 + 2xy + \sqrt{y}) dy$ where C is the circle $x^2 + y^2 = 4$ and is oriented in the positive direction.
- 23. Find the surface area of the unit sphere $\vec{r}(u,v) = \sin u \cos v \hat{i} + \sin u \sin v \hat{j} + \cos u \hat{k}$ where the domain D is $0 \le u \le \pi$ and $0 \le v \le 2\pi$.

Section C

Questions 24—27. Answer any **two** questions. Each carry 10 marks.

24. (a) Show that $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2} = 0.$

- (b) The production function of a certain company is $f(x, y) = 20x^{2/3}y^{1/3}$ Billion dollars, when x billion dollars of labour and y billion dollars of capital are spent :
 - (i) Compute $f_x(x, y), f_y(x, y)$.
 - (ii) Compute f_x (125, 27) and f_y (125, 27) and interpret your result.
- 25. Let $T(x, y, z) = 20 + 2x + 2y + z^2$ represent the temperature at each point on the sphere $x^2 + y^2 + z^2 = 11$. Find the extreme temperatures on the curve formed by the intersection of the plane x + y + z = 3 and the sphere.
- 26. Find the volume of the solid that lies below the paraboloid $z = 4 x^2 y^2$ above the *xy* plane and inside the cylinder $(x 1)^2 + y^2 = 1$.
- 27. Verify Stoke's theorem for the vector field $\vec{F}(x, y, z) = 2z\hat{i} + 3x\hat{j} + 5y\hat{k}$ and S is the portion of the paraboloid $z = 4 x^2 y^2$ for which $z \le 0$ with upward orientation and C is the positively oriented circle $x^2 + y^2 = 4$ that forms the boundary of S in the *xy*-plane.

 $(2 \times 10 = 20 \text{ marks})$

472558

3