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Section A

Answer any number of questions.

Each question carries 2 marks. Maximum marks 25.

1. Show that ( )f z z=  is nowhere differentiable.

2. Verify Cauchy-Riemann equations for f(z) = z2.

3. Write the Cauchy-Riemann equations in polar co-ordinates.

4. Define harmonic function and harmonic conjugate function.

5. Solve ew = – 2.

6. Express cos (2 – 4i) in the form a + ib.

7. Evaluate ydx xdy+∫  on the curve y = x2 from (0, 0) to (1, 1).

8. Evaluate zdz∫Ñ  over the first quadrant of the circle |z| = 1 from z = i to z = 1.

9. Prove that 
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where C is the unit circle |z| = 1.

10. Evaluate 4 3
C
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∫

+
Ñ  where C is the circle |z| = 1.

11. Define (a) Power series ; (b) Circle of convergence.

12. Write the Maclaurin series expansion for sin z and cos z.

13. Expand
3

( ) zf z e=  in a Laurent series valid for 0 | | .z< < ∞

14. Find zeroes of 2
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15. Find the residue of 2
( )
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+
 at its poles.
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Section B

Answer any number of questions.

Each question carries 5 marks. Maximum marks 35.

16. Verify the Cauchy Riemann equations for 2 2
( ) .

x iy
f x iy

x y

−
+ =

+

17. If ( )f z u iv= +  then show that 
2 2 2 2 2( ) .x x y yf z u v u u′ = + = +

18. Find the image of the annulus 2 | | 4z≤ ≤  under the mapping w = Ln z.

19. Find the principal value of ( 3) .
i
π−

20. Using Cauchy-Goursat theorem, evaluate 2
C
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+ −
Ñ  where C is the circle |z – 2| = 2.

21. Find 
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+
Ñ  where C is the circle |z| = 2.

22. Prove that the sequence 
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23. Find the residue of ( ) tan  at .
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Section C

Answer any two questions.

Each question carries 10 marks. Maximum marks 20.

24. Verify that the function 3 2( , ) 3 5u x y x xy y= − −  is harmonic in the entire complex plane and

find the harmonic conjugate function.

25. State and prove (a) Liouville’s theorem ; (b) Morerea’s thereom.

26. State Cauchy’s residue theorem, and using this show that 
C

0,
sin

dz

z z
=∫  where C is the unit

circle about the origin described in the positive sense.

27. Show that 
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2
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+ θ

(2 × 10 = 20 marks)
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