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Abstract

Design of optimal system reliability test plan has numerous advantages in product

manufacturing industry as it helps to evaluate the system reliability and thereby

demonstrates that the system will perform satisfactorily, prior to its deployment to

the concerned field. The failure data and prior information available on failure rates

of units will help manufacturers to develop higher warranty periods and better ser-

vice facilities to customers. Thus, a Bayesian approach can be adopted to obtain a

good reliability estimates and cost-effective optimal test plans. In systems that are

designed to achieve very high reliability (e.g., missiles, rockets, etc.), it is difficult to

obtain good estimate of system reliability. This is due to either the data recorded

contain only a small number of failures or lack of availability of sufficient testing time

to observe failures. In such circumstances, a better alternative for obtaining data

quickly is the application of accelerated life tests (ALTs) or partially accelerated life

tests (PALTs). In both of these testing procedures, units are subjected to perform

under higher stress than the normal stress level, whereas in PALT, some units are

allowed to perform under normal stress. Both testing procedures are destructive in

nature, i.e., one has to destroy some units to obtain lifetime quickly. Thus, in most of

the existing reliability estimation method, failure time data are obtained from either

classical life test or accelerated testing. In most of such situations, observing data is

time-consuming, expensive or impracticable. One can make use of readily available

degradation data enclosing information about system failure. For example, a fluo-

rescent lamp is considered as a failed one, when its luminosity falls below a certain

level, where an interesting feature of this experiment is the periodic monitoring of

the luminosity. Hence degradation data, which are obtained during the lifetime of
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units can be utilized to get reliability estimate saving time and money. This thesis

focuses on the design of optimal reliability test plans for multi-component systems,

and obtaining reliability estimates for systems using various techniques, such as using

classical data with covariate information, ALTs, PALTs, and degradation data.

Initially, the thesis addresses estimation problems in a parallel system with n

independent components. The lifetime of components in the system are assumed

to follow exponential distribution with parameter λ, where this λ is different for

each component. In the literature, this λ is considered as constant while designing

reliability test plans for parallel systems. But, in general, λ is not necessarily a

constant; for example, the system performance may be affected by natural covariates

such as temperature, pressure, and humidity. Thus, an attempt is made to construct

reliability test plans for a parallel system, where the failure rate λ is considered as a

function of covariates. An unbiased estimator and a maximum likelihood estimator for

λ are obtained to construct system reliability estimate. A new strategy is adopted

to replace the Acceptable reliability level (ARL) and Unacceptable reliability level

(URL) by Acceptable reliability interval (ARI) and Unacceptable reliability interval

(URI) respectively. The advantage of this strategy is that it reduces the burden of

huge rejection cost as compared to that with traditional test plans. Several examples

are discussed to illustrate the resulting test plans which lead to significant savings in

testing costs.

The problem of designing reliability test plan for a series system is considered

next. The focus is on designing component reliability test plans for a series system

with n independent components. The advantage in this situation is that components

can be tested at different locations, and finally, the system reliability test can be

performed by incorporating individual component failure data. Based on data ob-

tained from Type-II censoring, unbiased estimators for failure rates, and maximum

likelihood estimator for system reliability are constructed. The design parameters

are obtained by formulating an optimization problem which minimizes the maximum

expected testing cost. It is observed that testing cost under Type-II censoring is

random. To handle this random testing cost, an efficient algorithm is developed to



minimize the total expected testing cost. Moreover, a simulation study is conducted

to ensure that the derived sampling plan meets the specified producers and consumers

risks requirements. Further, sensitivity analysis and qualitative analysis are made to

study the effect of various input parameters and to discuss the nature of reliability

acceptance sampling plans. It is noted that the developed test plan has the potential

of reducing testing costs of about 80% in cost reduction compared to that in existing

test plans. In addition to this, it is observed that about 70% reduction in the number

of components to be tested for failure, as compared to that with respect to existing

plans in the literature.

Bayesian statistical methods are becoming evermore popular in applied and fun-

damental research. Since abundant data on failure are available in the industry in the

form of prior information, the design of Bayesian reliability test plans for systems is

considered in this work. Series and parallel systems with n different components are

studied. The lifetime of each component is assumed to follow an exponential distri-

bution with unknown parameter λ. The prior information available on λ is modeled

by Quasi-density function, and thereby a Bayes estimator is obtained for system re-

liability, based on data obtained from Type-I censoring. Examples are discussed to

illustrate the resulting test plan that minimizes the total testing cost involved. It is

noted that the Bayesian plan has about 70% savings in testing costs as compared to

that with existing test plans in the literature.

In a typical life data analysis, the reliability practitioner analyses life data (time

to failure) from samples of units operating under normal working conditions in order

to quantify the life characteristics of the product and make predictions about all of

the units in the population. For a variety of reasons, manufacturers wish to obtain

reliability results more quickly than they can when the data comes from products

operating under normal conditions. An alternative for this kind of situations is to

use accelerated life tests to capture life data for products under accelerated stress

conditions. In this line, a novel attempt is made to construct reliability acceptance

sampling plans for Weibull distribution under constant-stress PALT. The required

data for constructing sampling plans are obtained from Type-II censoring. Linear



and Arrhenius stress relationships are used, and MLEs of Weibull parameters and

acceleration factor are obtained. Further, exact distributions of some of the pivotal

quantities involved in estimating parameters in linear and Arrhenius stress relations

are obtained. Since the testing cost involved is random, an expression for expected

total cost is given and thereby optimal sampling plans are obtained. Some examples

are also discussed to illustrate the resulting sampling plan, and the testing costs are

compared as well. It is observed that plan based on Arrhenius stress model has

minimum testing cost as compared to plan based on linear stress model. Also, a

sensitivity analysis is carried out to analyze the effect of a change in consumer’s and

producer’s risks.

Finally, as a substitute to the destructive testing procedure in estimating system

reliability, readily available degradation data of systems are considered. An expo-

nential degradation path is considered with degradation rate parameter following

Weibull distribution. Unknown scale parameter of Weibull distribution is estimated.

The method of Bayesian estimation is also used to estimate the parameter and thereby

system reliability, by considering informative (Gamma) and non-informative (Quasi)

priors for scale parameter. The standard error for estimated scale parameter cor-

responding to both informative and non-informative priors are obtained using the

Bootstrap method.

The various approaches to system reliability estimation and test plans discussed

in this thesis are suitable for realistic situations and have an advantage of savings in

testing costs.
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Chapter 1

Introduction and Some
Preliminaries

1.1 Brief historical background

Reliability is a popular concept that has been celebrated as an admirable attribute

of a person or a product. The English dictionary of Oxford defines it as “the quality

of being reliable, that may be relied upon; in which reliance or confidence may be

put; trustworthy, safe, and sure.”The term ‘reliability’was first coined by poet Samuel

Taylor Coleridge [90]. Before world war II, reliability as a word meant dependability

or repeatability. The modern use was re-introduced by the U.S. military in the 1940s

and evolved to the present. In the early 1960s, increased specialization in reliability

engineering, led to the consolidation of various efforts addressing reliability issues

in components. Reliability engineering proceeded in two different tracks - first, a

specialization in the discipline, second, there started growing trend from component

level reliability to system based attributes, keeping in view of system performance

and availability. Then, there comes to the concept of reliability test plans to test the

reliability of system or component failures over a specified period.

An early application of reliability is related to the telegraph which was a system

powered by a battery with simple transmitters and receivers connected by a wire.

The main failure was due to either a damaged wire or insufficient voltage. By 1915,

radios with a few vacuum tubes began to appear throughout the world. Automobiles

were commonly used by 1920 and represented mechanical applications of reliability.

1
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In the 1920s product improvement through the use of statistical quality control was

initiated by Dr. Walter A. Shewhart at Bell Labs [50]. In the twentieth century, on a

parallel path with product reliability, the development of statistics started. Statistics

as a tool for making measurements soon became inseparable with the development

of reliability concept. For a decade, between 1920 and 1930, Taylor worked on ways

to make products more consistent and the manufacturing process more efficient. He

was the first to be responsible for separating the engineering from management and

control [52]. During this period, Wallodie Weibull investigated the fatigue of materials

in Sweden. During this time, he created a distribution, which is presently called as

Weibull. The world war II gradually gave a way to cost considerations for the military.

Nearly half of their essential types of equipment were non-functional all of the time

which resulted in a huge financial burden. IEEE formed the Reliability Society in

1948 to redress the grievances. In-order to study reliability issues with the air force,

Rome Air Development Center (RADC) was established in Rome (1951). By 1959,

Wallodie Weibull published “Statistical Evaluation of Data from Fatigue and Creep

Rupture Tests: Fundamental Concepts and General Methods”as a report for the U.

S military.

On the military side, Advisory Group on the Reliability of Electronic Equipment

(AGREE) was formed in 1950. By 1952, an initial report suggesting, (a) need to de-

velop better components and more consistency from suppliers (b) the military should

establish quality and reliability requirements for component suppliers (c) actual failure

(field) data must be collected on components in order to identify the causes of prob-

lems, for the creation of reliable systems, was published. In 1957, a final report was

generated by the AGREE suggesting some modifications like developing replaceable

Standard Electronic Modules to restore a failed system, running formal demonstration

tests with statistical confidence for products, running longer and harsher environmen-

tal tests that include temperature extremes and vibrations etc. [19]. Over the next

several decades, Birnbaum made significant contribution in probabilistic inequalities,

nonparametric statistics, reliability of complex systems etc.

In 1960s, a strong commitment to space exploration made NASA, a driving force for
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improved reliability of components on systems. During this decade, people started us-

ing and contributing to the growth and development of the Weibull function/Weibull

graph, and the propagation of Weibull analysis methods and applications. In 1962,

G.A. Dodson and B.T. Howard of Bell Labs published “High-Stress Aging to Failure

of Semiconductor Devices”in the Proceedings of the 7 − th National Symposium of

Reliability and Quality Control, justifying the Arrhenius model for semiconductors.

During the 1970s, the use and variety of ICs increased. Bipolar, NMOS and CMOS,

etc. are developed amazingly passive components, which were once covered by IRPS,

moved to a Capacitor and Resistor Technology Symposium. By the end of the decade,

the Navy Material Command brought in Willis Willoughby from NASA to help in

improving military reliability across a variety of platforms. He had been responsible

for making sure the Apollo spacecraft worked reliably all the way to the moon and

back.

During the decade of 1980s, rapid changes started coming in. Televisions com-

posed of semiconductors, automobiles rapidly used semiconductors with various mi-

crocomputers. Communication systems began to adopt electronics instead of older

mechanical switching systems. By 1990s, the place of integrated circuits (ICs) started

picking up. Wider use of stand-alone microcomputers was increased and, the military

reliability changed to a different dimension enabling new approaches and measures.

On the software side, the capability maturity model (CMM) was generated, and the

companies with the highest levels of the model were thought to have less residual

faults.

New approaches were required such as software mirroring, rolling upgrades, hot

swapping, self-healing, and architecture changes [62]. ISO 9000 added reliability mea-

sures of the development and design portion of the certification. The turn of the cen-

tury saw the expansion of the world-wide-web which created new challenges of security

and trust. The older problem of little reliability information available had changed

to too much information of questionable value. New technologies like webinars, net

banking, micro-electro mechanical systems, hand-held GPS, hand-held devices which

are the combination of cell phones and computers, all represent challenges to maintain
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reliability. In many ways, reliability has become the part of everyday life of human

beings and consumer expectations (see [63]).

1.2 Motivation and review of literature

Reliability and life testings are very fast growing and vital fields in consumer and

capital goods industries, in the space and defense industries, and in NASA. Both of

them provide the theoretical and practical tools by which it can be assured that the

probability and capability of parts, products, systems, and components to perform

their required functions in definite environments for the desired period without fail-

ure. It is necessary for any industry to be competitive regarding technology in view

of liberalization and globalization. Thus, all industries have to know the reliability

of their products, have to be able to control it and have to produce them at the

optimum reliability level that yields the minimum life-cycle cost to the customer. De-

signing and developing a product which satisfies the requirements of the performance

specifications during a relatively short period of the input-output and efficiency of

performance tests, but fails shortly thereafter or before the required period of function

or mission time, is of no use. Reliability engineers and practitioners should be well

aware of new methods of reliability and life testing in-order to optimally minimize

product failures.

The most important statistical method of assessing the quality of products is the

reliability measure. As consumers in the market care a lot about quality character-

istics, the design of optimal reliability test plans, which is less time-consuming and

cost-effective, help the producer to test the reliability of their products and release

them into the market and earn good profits. Currently, available reliability test de-

signs are not very much cost effective and, need further attention for improvements

in design. The estimates of reliability used by many industries are rudimentary or

not supported by proper statistical theory. Taking these factors into accounts, this

research work is focused on contributing to the design of reliability test plans by using

theoretical statistical approach, and thereby yielding highly cost-effective component

reliability test plans.
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Kececioglu, in his book ’Reliability & Life Testing Handbook’ [54] explained the

objectives of reliability and life testing. Reliability and life testing determine if the

performance of components, equipment, and systems, either under closely controlled

and known stress conditions in a testing laboratory or under field use conditions,

with or without corrective and preventive maintenance, and with known operating

procedures, is within specifications for the desired function period, and if it is not,

whether it is the result of a malfunction or of a failure which requires corrective action.

Determining the pattern of recurring failures, the causes of failure, the underlying

times-to-failure distribution, the associated stress levels, the failure rate, the mean

life, and the reliability of components, equipment, and systems and their associated

confidence limits at desired confidence levels are noted as the objectives of the test.

Reliability and life testing provide guidelines as to actions to be taken based on

the results obtained. Kececioglu further states that appropriate procedure in life

testing which provide reevaluation of the reliability wise performance of the units

after corrective actions are taken to provide a means to determine, with chosen risks,

whether a redesign has indeed improved the failure rate, mean life, or reliability of

components or equipment with the desired confidence, to provide a statistical means

to determine which one of two manufactures should be preferred. The author clearly

explains various elements and suggestions about the reliability and life testing in this

book.

1.2.1 System based component reliability test plans

It must be noted that reliability and life tests at the component level are different

from that at the system level. A component has more precisely definable function in

a system. A system is a major functional unit, may be composed of a multitude of

interacting components or independent components. A component has to be much

more reliable than the system in which it is functioning; consequently, to determine

its failure rate, mean life or reliability, a large sample size is required, a large number

of tests need to be conducted over a wide range of conditions that include burn-in

tests and simulate system environments, and over a relatively long period of time, to

determine the best range of its use in the system it is destined for and to demonstrate
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its reliability.

The expected lifetime and failure rate of units or products are of great significant

factors for any manufacturing industry. If a statistically significant sample is selected

randomly from a lot of similar units and if the selected units are tested till all units fail,

then enough data will get generated for confidently predicting the life expectancy of

any unit contained in the lot. Life testing is carried out for estimating the mean time

to failure and expected life of units. When units are produced in the manufacturing

industry, the manufacturer would like to study the exact behavior of units in the

normal working environment. For that, he needs data and evaluates life and reliability

of the units produced. By studying this, he can improve the design, manufacturing,

and other related goals. This will improve the confidence of the manufacturer and

thus to provide higher guarantee periods and better service facilities. Also, he can

plan maintenance schedules, replacements of parts, warranty policies, etc.

A dedicated program of testing is an important ingredient in the development of

a complex system. The usual objective is to evaluate the reliability of a system and

demonstrate that it will perform satisfactorily, prior to actual deployment in the field.

To derive optimum component test plans, the problem can be formulated based on

the notion of producer’s and consumer’s risks in acceptance sampling plans. For-

mally, producer’s risk is defined as the probability that an acceptable system may

be erroneously rejected by the test plan, whereas consumer’s risk is defined as the

probability that an unacceptable system may be erroneously accepted by the plan.

The errors associated with producer’s and consumer’s risks are respectively called the

Type-I and Type-II errors (see, [82]). The main step of development of the highly

reliable system is the testing and analysis of the system. The purpose of this testing

and analyzing is to demonstrate that the system under consideration will perform at

a level of reliability that is acceptable concerning the mission for which it is designed.

Before the actual production, put the system for testing and evaluate the reliability.

The reason for doing this is to ensure that the system will achieve some predefined

reliability requirements. Analogous to standard acceptance sampling plans, reliability

test plans can be expressed in terms of maximum acceptable values for producer’s
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risk (Type-I error) and consumer’s risk (Type-II error). System level tests tend to

be very highly scrutinized because of the length of time and the cost that they add

to the overall design and development schedule; however, they are often unavoidable.

On the other hand, there are situations where a better approach might be to use

component test plans for system reliability demonstration (see, [83]). There are nu-

merous advantages to this approach: it is less expensive and less time taking, testing

can proceed at different times and locations, test facilities for components tend to be

simpler and less expensive, and it is more cost effective since the entire system is not

assembled until it is guaranteed to be reliable. Several variations of the two basic op-

tions (component level and system level) are possible. For instance, one may conduct

tests at the level of sub-assemblies (or subsystems) that are composed of individual

components, and that are themselves part of the entire system. Alternatively, one

could adopt some combination of system, subsystem, and component testing. The

choice of an appropriate test plan depends on the characteristics of the specific system

under consideration, as well as cost and feasibility. System level tests are typically

more expensive as well as more inconvenient than component level tests. There are

several reasons for this: (a) The instrumentation, test fixtures and facilities, materials

and the actual test units all usually cost more for systems than for components. (b)

With component tests, the entire system need not be assembled prior to testing. This

results in significant savings both concerning costs as well as the times associated with

system development. (c) Testing may proceed independently at different times and

locations. This is an important issue since the components (or subsystems) of many

large systems are typically contracted to different organizations who develop these

components independently. (d) Component tests tend to be more informative in that

the behavior of individual components can often be understood better than in the

case where they are assembled into a larger system. (e) Finally, component testing

goes well with the notions of total quality since the final system is assembled only

after a performance guarantee is obtained.

Conversely, system testing is preferable when the component failures are highly



CHAPTER 1. INTRODUCTION AND SOME PRELIMINARIES 8

dependent on each other since component testing assumes independence of compo-

nent failure times and the availability of a mathematical model that expresses system

reliability in terms of component reliabilities. Another situation where system testing

may be preferable is when the interfaces between components are inherently unreli-

able; however, in such situations, it may still be more economical to use a combination

of system and component testing. (See, [83, 84]).

The basic problem was first considered by Gal (1974: [36]). In this paper, he

studied a situation where a certain unacceptable reliability level, R0, needs to be

demonstrated at specified confidence 1−α. He assumed exponential life distributions

for components and derived a general solution procedure to compute the optimum

component test times which minimize the total test cost while guaranteeing the prob-

ability requirement

P (Accept the system | System is bad) ≤ α.

The system is accepted if and only if there is no component failure during the test.

Mazumdar (1977: [59]) extended the model, that was presented by Gal (1974: [36]),

to the situation where in addition to an unacceptable system reliability level, certain

acceptable reliability level needs to be demonstrated at specific confidence 1− β. He

added the constraint

P (Reject the system | System is good) ≤ β.

In the context of quality control, the significance levels α and β are also known

respectively as consumer’s and producer’s risks. Mazumdar (1977: [59]) used the

following decision rule to accept a system: “Test (with replacement) each component

j for a total of tj time units. Observe the number of failures for each component. If

the total number of failures is less than a pre-assigned number, accept the system;

otherwise, reject it”. This rule for accepting a system is referred to as the sum rule

in the sequel. Using the sum rule, Mazumdar (1977: [59]) gave a solution for the

optimum component test times for a series system. Within the framework of their

formulations, both Gal (1974: [36]) and Mazumdar (1977: [59]) showed that for a
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series system, the optimum component test times are independent of component test

costs, and are identical. In all this work, it was assumed that no prior information is

available about component reliabilities.

Altinel (1992: [14]) studied this problem first for a series system of k components

when upper bounds on individual component failures are given as the prior informa-

tion; he has shown that optimum component test times are not identical, and the

use of such prior information also leads to reduced total test costs. Note that in

this work, the upper bound considered is a pure constant and not a function of any

covariates that affect the functioning of the component or system. He also developed

a procedure to compute optimum component test times. Altinel (1994: [9]) extended

these results for a problem which is more general in two aspects. First of all, the

only assumption he made on the system reliability function is that it is an increasing

function of component reliabilities, or equivalently a decreasing function of compo-

nent failure rates, which is true for all coherent systems. Also, the deterministic prior

information on component failure rates can restrict their selection to any compact

and non-empty subset of non-negative real numbers. This subset does not necessarily

have to be in the form of simple upper bounds on the failure rates, which limits each

of them with a real closed interval; it can be a polyhedral set, or a hyper-sphere, etc.

Different aspects of the test design problem for a series system have been addressed

in [14, 60, 81]. Rajgopal and Mazumdar (1995: [81]) considered a series system con-

sisting of components with unequal test costs and unknown constant failure rates

with pre-assigned bounds on the failure rate. They derived minimum cost compo-

nent test plans that guarantee specified values of producer’s and consumer’s risks on

the system reliability. These plans are derived for the case in which the component

failure times are exponentially distributed, as well as for the case in which they fol-

low a Gamma distribution. The optimization problems are formulated and solved

via standard mathematical programming techniques. Mazumdar (1980: [60]) consid-

ered the problem of optimizing component testing for a series system with redundant

subsystems so as to minimize the total cost of testing with given constraints as, the

probability of accepting the system must be less than α if the system is not good



CHAPTER 1. INTRODUCTION AND SOME PRELIMINARIES 10

(that is, the reliability of the system is less than a pre-assigned unacceptable level),

and the probability of rejecting the system must be less than β if the system is good

(that is, the reliability of the system is greater than a pre-assigned acceptable level).

This problem was solved previously for a series system under the sum rule accep-

tance criterion. This result is extended in the paper [60] to cover the more general

case of a series system that has built-in redundancy in that it consists of subsystems

each of which contains several identical components in parallel. The optimum test-

ing time obtained is shown to be independent of the individual component testing

costs. Altinel (1992: [14]) developed an acceptance procedure for a series system

based on component tests that guarantee certain probability requirements on Type-

I and Type-II errors. Methods for computing the individual component test times

which minimize total test cost and guarantee the probability requirements for this

acceptance procedure have also been given. In the paper [14], a priori deterministic

information on individual component failure rates is available. Results have shown

that it is profitable to use the given information, and optimum component test times

are not necessarily equal: they depend on individual component test costs. They pro-

vide a procedure to compute optimum component test times. This procedure is based

on the well-known cutting plane idea and column generation technique. They also

discuss the conditions for the existence of an optimum solution. Rajgopal, Mazum-

dar, and Savits (1994: [85]) derive some of the properties of the Poisson distribution

that are not commonly known or used to construct certain class of component tests

for verification of a series system reliability.

Parallel systems have also been addressed in [100] and [79]. Yan and Mazumdar

(1987: [100]) considered a parallel system of n independent components with constant

failure rates and the component testing procedure guarantee that the given consumer

and producer risks are not exceeded. They give certain restrictions on the magnitude

of the unknown failure rates for guaranteeing the producer risk. The component test

procedures use Type-I censoring and use decision rules based on (a) the total number

of component failures during the testing periods, (b) the number of failures for each

component, and (c) the maximum likelihood estimate of system reliability. Observe
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that among these decision rules, (a) and (b) do not focus on the importance of taking

system reliability estimate into consideration for designing test plans. Rajgopal and

Mazumdar (1988: [79]) considered the problem of acceptance test plans for a parallel

system of different components with constant failure rates. The components are

individually tested, and the tests are terminated as soon as a pre-assigned number of

components fail. This paper provides a criterion for accepting or rejecting the system

based on the sum of the logarithms of the total times on test for each component. The

critical level for the test statistic is chosen to guarantee that the specified consumer

and producer risks on the system reliability are not exceeded. The use of this statistic

makes the computation of these critical values much simpler as compared with that

of a previously used statistic based on the product of the total times on test for each

component. Several approximate procedures are considered for deriving these critical

values. The paper also formulates the optimization problem for deriving the minimum

cost component testing plans when a Type-II censored component-test procedure is

used for a parallel system with n independent components.

Rajgopal and Mazumdar (1996: [82]) considered the problem of acceptance test

plan for a series system of n different components, each having an unknown, but a

constant failure rate. Components are individually tested, and the tests are termi-

nated when a pre-assigned number of failures are observed for each component. The

total time on test for each component is noted, and a statistic is constructed by us-

ing the observed test times and the number of failures of different components. The

statistic was based on an MLE of system reliability. This statistic based on compo-

nent test times is then used in specifying a decision rule for accepting or rejecting

the entire system. The design of the test plan is stated as an optimization problem

which minimizes test costs while ensuring that specified consumer and producer risks

on the system reliability are not exceeded. In this work, they have shown that all

components in a series system have to be tested equally. But, in practice, this may

not be true. Moreover, the total test cost considered in their work is not realistic,

since cost under Type-II censoring is not necessarily a constant quantity.
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Altinel, Ozekici, and Feyzioglu (2001: [12]) considered the component testing prob-

lem of a series system with redundant subsystems, where all components fail expo-

nentially. In this work, the component failure rates are not constant parameters, but

they change dynamically with respect to time. Also, the optimal component test-

ing problem is formulated as a semi-infinite linear programming problem. They also

presented an algorithmic procedure to compute optimal test times based on the col-

umn generation technique. Altinel, Ozekici, and Feyzioglu (2002: [13]) considered the

component testing of a series system in a random mission. In this paper, they have

shown that the realistic model can be handled using available results in semi-infinite

linear programming and difference of convex functions programming.

Vellaisamy and Kumar (2008: [72]) constructed a reliability test plan for a parallel

system with n independent components under Type-II censoring with the assumption

that the lifetime of each component follows an exponential distribution with a con-

stant but unknown failure rate parameter. They derived optimal reliability test plans

which ensure the usual probability requirements on system reliability. Further, they

solved the associated nonlinear integer programming problem by a simple enumera-

tion of integers over the feasible range and developed an algorithm to obtain integer

solutions with minimum cost. Vellaisamy and Kumar (2010: [73]) constructed a re-

liability test plan for a series system with n independent components under mixed

censoring, a combination of both Type-I and Type-II censoring, with the assump-

tion that the lifetime of each component follows an exponential distribution with a

constant but unknown failure rate parameter. In their work, they have shown that

optimal sample size is the same for all components.

Most of the component level reliability test plans that are available in literature

have been developed for series and parallel systems under the assumption that com-

ponents have constant failure rates. Sabnis and Agnihothram (2006: [88]) construct a

reliability test plan for a parallel system with failure rates of the corresponding com-

ponents depending upon covariates. With the motivation of developing more realistic

test plans Sabnis and Agnihothram (2007: [89]) construct reliability test plans for a

series systems under the assumptions that the component lifetimes are independently
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distributed exponential random variables. The failure rates of these exponential ran-

dom variables depend on covariates. In their work, they obtain data from Type-I

censoring. However, the reliability test plans for a parallel system with n different

components in the presence of covariates is not addressed in the literature, by using

data from Type-II censoring. Similarly, reliability test plan for a series system in the

presence of covariates, by using data from Type-II censoring is not considered yet.

The initial contributions in this thesis is to construct optimal reliability test plan

for parallel and series systems having different components with independently dis-

tributed exponential lifetimes, and by obtaining data from Type-II censoring, while

considering covariate information available on failure rates. More meaningful test

plans are obtained by computing system reliability estimates, and by using upper bound

on failure rates as a function of covariates. In addition to this, a random testing cost

under Type-II censoring is considered, and the corresponding optimization problem is

solved by using the expression for maximum-total-expected-testing-cost, for handling

the problem of testing reliability for a series system. Thus an attempt is made in this

thesis to address the issue of obtaining optimal reliability test plan in more realistic

situations, by obtaining data from Type-II censoring. Next, using prior informa-

tion available on failure rates of components in the system, an attempt is made to

construct Bayesian reliability test plans for series/parallel systems by obtaining data

from Type-I censoring. This Bayesian plan has numerous advantages over available

classical plans, in terms of savings in testing costs.

1.2.2 Partially accelerated life test and acceptance sampling plans

In life testing, acquiring life test data at a specified normal use condition require

a long period. This problem makes life testing a difficult, time consuming and a

costly procedure. Under such circumstances accelerated life tests (ALTs) or partially

accelerated life tests (PALTs), which shorten the lives of test units are used. ALT and

PALT differ on the conditions at which they are applied. The test units are run only

at accelerated conditions in an ALT, whereas test units are run both at accelerated

and normal use conditions in PALT.

Usage of ALT can often be seen in reliability prediction. Here, in order to induce
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early failures, specimens are tested at high-stress levels. Then, through an existing

stress dependent model, the failure information is related to specimens at an oper-

ational stress level. In the absence of such a model, the ALT can’t be conducted.

In such conditions PALT, which is a combination of both ordinary and accelerated

life tests, becomes a suitable option. Reliability analysis by the application of PALT

helps to save time and money as compared to that in ordinary or traditional life tests.

Chernoff (1962: [23]) and Bessler et al. (1962: [87]) coined and studied the concept

of accelerated life tests. The parameter θ in these tests, which appears in the un-

derlying distribution function, is considered as a specified function say θ = φ(s, η).

Here, s is an environmental stress to which an unit on test can be subjected, and

η is an unknown parameter, which needs to be estimated from data. They consider

the problems of estimation of unknown parameter and of the optimal design of test-

ing process in both sequential and non-sequential contexts. Lifetime distribution is

assumed to be exponential, and φ is considered as linear function. Several authors,

for example, [77], [25], [38], [1–3], [66, 67], [4], [49], [61], [7], [5] have studied PALT

under Type-I and Type-II censoring. The time at which a test unit can be switched

from the standard stress conditions to higher stress is under the control of the exper-

imenter. This is the assumption made by DeGroot and Goel (1979: [25]). They also

assumed that, in accelerated life testing, it will be possible to choose various levels

of higher stresses. Therefore, they restricted themselves to problems in which higher

stress levels were fixed in advance.

Optimal designs of partially accelerated life tests (PALTs) for Exponential distri-

bution is considered in [27]. The sample proportion allocated to accelerated condition

for the constant PALT is determined to minimize the asymptotic variance of MLE

of the acceleration factor. They obtained optimal acceptance sampling plan under

PALT, by minimizing the generalized asymptotic variance of estimators of failure

rate and acceleration factor. However, no importance is given to minimize Type-

I and Type-II error while designing the required acceptance sampling plans. Bai,

Chung and Chun (1993: [15]) extended Bai and Chung (1992: [27]) to units having

lognormally distributed lives. Assuming Weibull distribution as a lifetime model, the
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paper [48] considers optimum plans for failure-step stress partially accelerated life

tests with two stress levels under Type-II censoring. The optimum proportion of test

units failing at each stress according to a certain optimality criterion is determined

by the optimum test plans. Here the D-optimality criterion is considered, and some

numerical illustrations are provided for illustrating the proposed procedure.

Aly and Ismail (2008: [43]) discuss time-step stress partially accelerated life tests

(PALT). Under Type-I censoring, the maximum likelihood estimation of the param-

eters of simple (only two stresses) time-step stress model is presented. Further, the

confidence intervals of the estimators are constructed. Also, optimum time-step stress

test plans are obtained. The optimal stress switching point is obtained from the op-

timum test plan. These plans minimize the generalized asymptotic variance of the

maximum likelihood estimators for the model parameters. The test units generally

used to follow Weibull lifetime distribution.

The paper [42] concerns with constant-stress partially accelerated life test with

multiply censored data. In this paper, the lifetime of the test unit is assumed to follow

an inverted Weibull distribution, and maximum likelihood estimates are obtained for

the model parameters and the acceleration factor. The confidence intervals of the

unknown parameters and acceleration factor are constructed for large sample sizes.

In the paper [78], an optimum design of constant-stress partially accelerated life

test (PALT) plan is presented. The authors in [78] assumed that the product life fol-

lows Truncated logistic distribution truncated at point zero under Type-I censoring.

In this paper, the optimal sample proportion allocated to both normal use condition

and accelerated condition for the constant PALT is determined by minimizing the

generalized asymptotic variance of MLEs of the acceleration factor and model pa-

rameters. The paper [45] deals with simple constant-stress Partially Accelerated Life

Tests (PALT) with Type-II censoring. It is assumed in this paper that the lifetime at

design stress has a Weibull distribution. They developed statistically optimal PALT

plans such that the Generalized Asymptotic Variance (GAV) of the maximum likeli-

hood estimators (MLEs) of the model parameters at design stress is minimized. The
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study in paper [44] considers constant-stress partially accelerated life tests for cen-

sored lifetime data, where the lifetime distribution is assumed to follow a log-logistic

distribution.

The paper [47] discusses the estimation of Weibull distribution parameters based

on hybrid censored data under constant-stress partially accelerated test model. Two

estimation methods; maximum likelihood and percentile bootstrap are used to make

statistical inference on the Weibull distribution parameters and the acceleration fac-

tor. The mean square errors of the estimators are calculated to evaluate their perfor-

mances, through a Monte Carlo simulation study.

The constant stress partially accelerated life tests with Type-I censoring under

Weibull distribution is considered in [46]. The maximum likelihood estimators of the

model parameters are derived in this paper, and partially accelerated life test plans

are developed such that the generalized asymptotic variance of the maximum likeli-

hood estimators of the model parameters is minimized. In the paper [94], authors

estimated the parameters of Weibull distribution in step-stress partially accelerated

life tests under multiply censored data. The maximum likelihood estimates are used

to obtain the parameters of the Weibull distribution and the acceleration factor un-

der multiply censored data. Also, they obtained the confidence intervals for the

estimators. The case of constant-stress partially accelerated life tests under Type-I

censoring, with test units following Gompertz distribution, is discussed in [57]. Max-

imum likelihood estimates of parameters of distribution and acceleration factor are

obtained. In addition, approximate confidence intervals of the parameters are also

constructed, and optimum plans are obtained.

All the acceptance sampling plans discussed under constant-stress PALT obtained

optimal plan parameters without considering the notion of minimizing testing costs

subjected to the requirements of satisfying the probability of Type-I and Type-II error

constraints. As the next contribution to this thesis, an attempt is made to construct

an acceptance sampling plan for Weibull distribution using constant-stress partially

accelerated life test. The optimal plan parameters are obtained by minimizing the total
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expected testing cost subjected to the requirements of satisfying the probability of Type-

I and Type-II error constraints. Two different life-stress relations are considered, and

corresponding optimal test plans are compared.

1.2.3 Degradation growth models and estimation

It is difficult to estimate the system reliability for systems that are designed to achieve

high reliability using data that consists of a small number of failures obtained from

life tests that record only time to failure. Reliability depends on the dynamic balance

between stress which accumulates over time and strength for many such systems. For

example, a vehicle axle fails when the depth of a crack exceeds a critical level (see

[70]). Measurements taken over time on degradation or accumulated stress contain

information about the reliability of the system concerned. Even with data from

a relatively small number of units, one can hope to achieve better specification of

reliability by harnessing this information (see [20]). Similar studies in this area were

done in [93], [24], [22], [98], [96] and [97].

Murray (1993: [69]) initially performed the degradation data analysis by setting

models to sample path for the individual units and obtained pseudo failure times.

Further, these failure times were analyzed using common life data analysis methods.

Meeker et.al (2009: [64]) took the random effects model to describe the unit-to-unit

variability and that showed how a degradation model along with a failure definition,

induces a failure time distribution. Marta. A. Freitas et al. (2009: [33]) made it clear

by presenting three classical methods: namely, analytical, numerical and approximate

methods to estimate the failure time distribution of degradation models D(t) = βt

and D(t) = (1/β)t. They used various parametric distributions such as Weibull,

Lognormal and normal distributions for the random parameter. Illustrations were

also presented as a case study on train wheel degradation data. Julio C. Fereira

et.al (2012: [32]) discussed the case study on train wheel degradation data by taking

D(t) = α0 + eηt as degradation model with η specifying the random effect parameter.

Time to failure distribution of wheels is obtained based on the position of wheels.

Later, Freitas et al. (2010: [34]) conducted a similar study by presenting five methods

of degradation data analysis. Parametric degradation models by considering linear
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degradation paths and simple non-linear degradation paths, are studied by authors

in [8], [58] and [40]. The non-linearity nature (increasing/decreasing) of measurements

can be seen in real life examples like train wheel degradation data and drug potency

degradation data.

In obtaining data from degradation measurements, systems are inspected at pre-

fixed time points in designed experiments, and the current status of the systems are

recorded along with measurements of accumulated stress. Failure can be defined for

such systems in terms of a specified level of strength s(t) at time t, and the reliability

at the same instant is given by R(t) = Pr[X(t) < s(t)], where X(t) denotes the

accumulated stress at the same instant (see, [17]).

There are several works on the modeling of degradation leading to failure. Gorjian

et.al (2010: [39]) and Nikulin et.al (2010: [68]) are examples of the papers in this

direction. In many of these models it is common to choose a fixed threshold s(t) = s

for the degradation X(t) for all t ≥ 0. The reliability at time t for these models is

given by R(t) = P [X(t) < s].

Degradation was modeled as a function of time t by Lu and Meeker (1993: [20]).

The function is given by X(t) = µ(t, θ̄, φ̄), t ≥ 0, where φ̄ is a vector of fixed

effect parameters, θ̄ is a vector of random effect parameters and the degradation is

measured with additive error at specified times. In their model, the event of a critical

crack length exceeding a constant level of 1.6 inches is defined as a failure (that is,

s(t) = 1.6 inches). They had considered a data set consisting of fatigue crack length

measurements at equi-spaced time points for many metallic specimens under test.

The function X(t) is regarded as an observable without error and has been mod-

eled as a Gamma process with the scale parameter explained by a random effect

(see, [56]). For computational ease, they had made a simplifying assumption which

resulted in their analysis exhibiting a lack of fit with experimental data. Park and

Padgett (2005: [76]) considered the same data as that of [56] and modeled X(t) al-

ternatively as a Gamma process as well as geometric Brownian motion. The hetero-

geneity present among the degradation paths was however ignored. They assumed a

specific parametric model for the degradation path to estimate the reliability function
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R(t) and developed a two-stage estimation methodology for the associated param-

eters. In general, any parametric methodology is sensitive to the assumed model,

and hence the resulting estimator may be biased whenever the parametric form is

incorrectly chosen.

Thus the degradation path is known for some systems, and in such cases, useful

information on the reliability of a product can be obtained from these degradation

measurements. As a contribution to estimation using degradation data, in this thesis,

a degradation model having exponential degradation path with positive degradation

rate, which follows a Weibull distribution with known shape parameter and unknown

scale parameter is considered. The corresponding unknown parameters are estimated.

Baye’s estimate of scale parameter of Weibull distribution is also obtained, and thereby

Bayesian reliability of first kind and second kind for the system are computed.

1.3 Some preliminaries

1.3.1 Concepts of reliability

Reliability provides the relationship between the age of a unit and the probability

that the unit survives up to that age while starting the mission at age zero. The

reliability function enables the determination of the conditional reliability function,

the probability density function, the failure rate function and the mean life func-

tion. Reliability is the conditional probability, at a given confidence level, that the

equipment will perform their intended functions satisfactorily or without failure; i.e.,

within specified performance limits, at a given age, for a specified length of time,

function period or mission time, when used in the manner and for the purpose in-

tended while operating under the specified application and operation environments

with their associated stress levels.

Let T be the lifetime of a device, then t be the observed time to failure. Since T

is a random variable, there is a probability distribution function of T , then

F (t) = P (T ≤ t), 0 < t.

It represents the probability of failure in the interval [0, t]. Then the corresponding
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reliability function is given by

R(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(x)dx,

where f(t), t ∈ (0, ∞) is the probability density function of T .

Thus, reliability is the probability that the time to failure is equal to, or greater

than, the mission duration. Then the unit cannot fail before the mission is completed,

because it has operated for a time equal to or longer than the mission duration, and

the probability of not failing before the mission is completed, is the reliability of the

unit for that mission. In other words, if T represents the lifetime of a component,

then the reliability at a time t is the probability that the life time T exceeds t. Note

that R(0) = 1 and R(∞) = 0.

1.3.2 Conditional reliability

The conditional reliability is defined as the probability that a component or system

will operate without failure for a mission time t given that it has already survived for

a time T.

R(t/T ) =
R(t+ T )

R(T )
.

1.3.3 Failure rate function

The failure rate function, λ(T ), provides the relationship between the age of a unit

and the failure frequency, or the number of failures occurring per unit time at age T .

The failure rate function enables the determination of the reliability bath-tub curve.

The failure rate λ(t) of an item exhibiting a continuous failure-free operating time T

is defined as

λ(t) = lim
δt→0

P (t < T < t+ δt/T > t)

δt
=

f(t)

1− F (t)
= −R

′
(t)

R(t)
. (1.3.1)

It is to be noted that f(t)δt, for small δt is the unconditional probability for failure

in (t, t+ δt], given the item is new at t = 0. λ(t)δt is the conditional probability that

the item will fail in the interval (t, t+ δt] given that the item was new at t=0 and has

not failed in (0, t].
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Assuming R(0) = 1, integration of equation (1.3.1) yields

R(t) = e−
∫ t
0 λ(x)dx.

Example: If the failure distribution function follows an Exponential distribution

with parameter λ , then the failure rate function is

λ(t) =
f(t)

R(t)
=
λ exp(−λt)
exp(−λt)

= λ.

This means that the failure rate function of the exponential distribution is a constant.

In this case, the system does not have any aging property. This assumption is usually

valid for software systems. However, for hardware systems, the failure rate could have

other shapes.

1.3.3.1 Mean time to failure (MTTF)

The mean time to failure is the average, or the expected time to failure of identical

units operating under identical application and operation environment stresses. Let

T be the failure free operating time, then the mean of T is given by

MTTF = E(T ) =

∫ ∞
0

tf(t)dt =

∫ ∞
0

R(t)dt.

Example: If the lifetime distribution function follows an exponential distribution

with parameter λ, that is, F (t) = 1− exp(−λt) , the MTTF is

MTTF =
∞∫
0

R(t)dt =
∞∫
0

exp(λt)dt =
1

λ
.

This is an important result as for exponential distribution. MTTF is related to a

single model parameter in this case. Hence, if MTTF is known, the distribution is

specified.

1.3.4 System reliability

The main concern of a system engineer is to estimate various reliability parameters

of systems he is dealing with. The system may vary from simple to complex. One

approach for analyzing such systems is to decompose them into subsystems of conve-

nient size, each representing a specific function. Reliabilities of subsystems are then

estimated and combined to determine the reliability of the entire system using cer-

tain probability laws. This approach requires a complete knowledge of the physical
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structure of the system and the nature of its functions sufficiently well to determine

the behavior of the system in the event of failure of a subsystem. The subsystem may

consist of one or more components whose reliabilities are known.

1.3.4.1 Systems with components in series

Consider a system having a total of n independent components. If the functional

diagram suggests that the successful operation of the system depends upon the proper

operation of all the n components, then we say that the system configuration is a series

or chain type. The information at the IN end will reach the OUT end only if all the

n components functions satisfactorily. Many complex systems can be reduced to such

a simple structure. Let pi(t) is the probability that the component i is good at time

t, then the time-dependent reliability function of the system is

R(t) = p1(t)p2(t)...pn(t) =
n∏
i=1

pi(t).

The reliability of a series system is always worse than the poorest component.

Figure 1.1: Series system

Example: Consider a series system having 3 components with reliabilities R1 =

0.6, R2 = 0.9, R3 = 0.8, then the reliability of the system R = R1R2R3 = 0.432.

1.3.4.2 Systems with components in parallel

A system with m components is known as an m- unit parallel system if and only if the

successful functioning of any one of the components leads to the system success. The

components are connected across each other and there are m parallel paths between

the IN end and the OUT end and the existence of any of them is sufficient to transmit

information from the IN end to the OUT end. In other words, The system fails only

when all units fail. The system reliability is

R(t) = 1−
m∏
i=1

(1− pi(t)).

The reliability of the parallel system increases with components.
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Figure 1.2: Parallel system

1.3.4.3 k out of m systems

The system will work if at least k components work out of m identical components.

For systems with identical and statistically independent components, the Binomial

distribution can be used to evaluate the reliability. If p is the probability of success

of each component, then the probability that exactly x out of m components are

successful is given by

p(m,x) =m Cxp
x(1− p)m−x.

Hence the reliability of the system is given by
m∑
i=k

(
n

i

)
px(1− p)m−x.

1.3.5 Reliability and life testing

The reliability of components and systems can be predicted by various methods and

procedures. Many different models and data sources are available for this purpose.

However, all these models are developed based on some assumptions and approx-

imations to simplify the procedures. Therefore, the predicted reliabilities can be

considered good only as an initial approximate estimate of the actual performance of

the component or system for comparative studies. The actual performance (reliabil-

ity) of the system or component can be evaluated from the field data. This is the best

approach for reliability evaluation. However, this is easier to say than to do in prac-

tice. Field data collection, storage, and retrieval need tremendous efforts. Effective

and honest cooperation of industry, service stations, and costumers is needed for this

to happen. In many cases, actual field data are not kept in a proper format. This
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results in data grouping and associated loss of vital information. Under these situa-

tions, the most practical and acceptable alternative is data generation in laboratories

by conducting life tests.

The most important objective of life testing is to generate failure data. There

are many more objectives for conducting life tests in the laboratory. It depends on

the purpose of conducting the life test. Life testing may be for engineering failure

analysis, cause analysis, identification of failure mechanisms, weak links, and other

specific purpose of interest.

1.3.6 Some life testing methods

Some of the important life testing methods are briefly discussed below:

1.3.6.1 Life test with censoring

The procedure adopted for terminating a life test is called censoring. Censoring of

data arises when exact lifetimes are known only for a portion of the individuals under

study. A life test will get terminated when all units undergoing a test fail. However,

it might take a lot of time and immense effort for this to happen in practice, and

sometimes it is even not possible to attain failures of all units under the specified test.

Therefore, censoring methods are developed for terminating life tests, and thereby to

study the lifetime characteristics of units in the population.

Observations will need to be censored if they are above certain pre-defined bounds.

Different types of censoring schemes are available in the literature. Some of the meth-

ods used for censoring in reliability test plans are discussed below:

Type-I censoring: In Type-I censoring, components (units) are tested for a predeter-

mined duration of time. When a component fails before this fixed time it is replaced

with an identical component and testing is continued. The total number of failures

during this test period is noted. Let T1, T2, · · · , Tn be independent, identically dis-

tributed random variables each with cumulative distribution function F . Assume

also that tc is a fixed censoring time. Instead of observing T1, T2, · · · , Tn, observe
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Y1, Y2, · · · , Yn, where

Yi =

Ti, if Ti ≤ tc

tc, if Ti > tc
.

Type-II censoring: In this procedure, the number of failures is predetermined, and

components (units) are tested until the required number of failures is achieved. The

time duration between each failure is observed and noted. Let r < n be fixed, and

let T(1), T(2), · · · , T(n) be the order statistics of T1, T2, · · · , Tn. Observation ceases

after r − th failure, so one can only observe T(1), T(2), · · · , T(n). The full ordered

observed sample can be written as: Y1 = T(1), Y2 = T(2), · · · , Yr = T(r), · · · , Yr+1 =

T(r) · · · , Yn = T(r).

Mixed censoring: In mixed censoring, a predetermined number of units of a compo-

nent are tested for a predetermined unit time. If a component survives the test for

this unit time, then the component is classified as a successful unit; if a component

fails the test during this unit time, then it is declared as a failed unit. In either

case, a new component is immediately put on the test, and this is continued until the

predetermined number of components is tested.

Progressive Type-II censoring: In life testing experiments, data is often censored.

Among the different censoring schemes, Type-I and Type-II censorings are the most

popular. Unfortunately, in these censoring schemes, it is not possible to withdraw

live units during the experiment. A generalization of the classical Type-II censoring

scheme allows for the withdrawal of live units during the experiment, and it is called

the progressive Type-II censoring scheme. In this scheme, n units are placed on a

life test for observing a predetermined m number of failures. At the time of the first

failure, R1 of the remaining n − 1 surviving units are randomly removed from the

experiment. At the time of the second failure, R2 of the remaining n−2−R1 units are

randomly removed from the experiment. Finally, at the time of the m− th failure, all

the remaining units Rm = n−m−R1−· · ·−Rm−1 are removed from the experiment.
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1.3.6.2 Life test with replacement

In tests with replacement, life testing is started with n units. Whenever a unit fails, it

is replaced with a new unit and the testing is continued without any halt. The test is

terminated either after the pre-decided time or after the occurrence of the r-th failure.

Test with replacement will generate more data over a period of time as compared to

the data generated by tests without replacement over the same time period.

1.3.6.3 Simulated life tests

In this procedure, units are tested in simulated operating conditions; equipment such

as test chambers are used for obtaining the simulated operating conditions. Some

of the factors that significantly influence the operating conditions are temperature,

humidity, pressure, etc. The actual tests are carried out with various combinations of

these factors. Best results are achieved through the proper control of simulated test

conditions.

1.3.6.4 Accelerated life testing

Most of the highly reliable products manufactured in the industry do not fail very

easily. To obtain failure data of such products further techniques are required. Ac-

celerated life testing is one such technique to obtain faster failures. A variety of

procedures is used to accelerate failures due to the difficulties encountered in per-

forming life tests with time deadlines. Accelerated tests are designed and carried out

for accelerating failures so that more number of units fail in a short test duration.

Compressed-time test and advanced stress tests are two different types of accelerated

life tests. In compressed-time testing, loads and environmental stresses on the prod-

uct are maintained at the same level as in normal use but the product is used more

frequently in the life test than it would normally be used. In advanced stress test, life

testing is conducted at higher stress levels to obtain more data within a short time.

Some of the common accelerated tests are design qualification test, environmental

stress screening, etc.
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1.3.7 Methods of estimation of parameters

1.3.7.1 Maximum likelihood estimation

A statistical model is specified by identifying an appropriate sampling distribution.

The probability of observing an outcome of a future experiment conducted on a sample

of items drawn from a population of interest is known as the sampling distribution.

Once the experiment is conducted, the sampling distribution is a function of the

unknown parameters and is called the likelihood function. This function contains all

information of the data that is relevant for estimating the unknown model parameters.

These model parameters are estimated by finding the value of the parameters that

maximize the value of the likelihood function. Such estimates are called maximum

likelihood estimates. These estimates make the observed data as likely as possible.

For computational convenience, the logarithm of the likelihood function is maxi-

mized instead of the likelihood function itself. This is performed because the same

value maximizes both the functions. The logarithm of the likelihood function is called

as a log-likelihood function. When the observations are conditionally independent,

the log-likelihood function is the sum of the logarithm of the density values evaluated

at each observation. Taking the derivative of the log-likelihood function with respect

to the unknown parameter and equating it to zero gives the maximum likelihood es-

timator of the parameter. the MLE has always been a good choice for an estimator

due to the following reasons, namely, (i) ease of calculation, (ii) consistent estima-

tors, (iii) functions of sufficient statistics, (iv) asymptotic normality under regulated

conditions.

1.3.7.2 Bayesian estimation of reliability

In Bayesian reliability analysis, the statistical model consists of two parts, namely

likelihood function, and the prior distribution. The function constructed from the

sampling distribution of the data, defined using the probability density function as-

sumed by the data is called the likelihood function. It is a function of the unknown
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parameters. Now in the Bayesian analysis, the parameters in the likelihood func-

tion are treated as unknown quantities. The uncertainty in these parameters is de-

scribed using probability density functions. Before the data is being analyzed, the

distribution that represents our knowledge about these parameters is known as prior

distribution. Thus the likelihood function and the prior distribution are the basis

for parameter estimation and inference. The posterior distribution calculated using

the Bayes theorem uses the likelihood function and the prior distribution to describe

the uncertainty associated with the parameter. The posterior distributions are true

probability statements about the unknown parameters. Thus the likelihood function,

prior distribution, Bayes theorem and posterior distribution makes Bayesian relia-

bility analysis easy to describe and derive estimates that are easy to interpret and

use.

The above mentioned basic definitions and some methods discussed across various

subsections are as mentioned in [73], [75], [18], [28], [71], [26], [65], [92] and [41].

1.4 Thesis summary

This thesis deals with the design of reliability test plans and estimation using classical

and Bayesian methodology. The thesis is organized into seven chapters, including

introduction as the first chapter and concluding remarks and scope for future work

as the last chapter. A summary of the remaining chapters are presented below:

In Chapter 2, optimal reliability test plans are designed for a highly reliable par-

allel system with n different components. The data are obtained from Type-II cen-

soring, with the assumption that components have lifetimes that are exponentially

distributed random variables, and failure rates of components depend on k covariates

such as room temperature, humidity, and pressure. An unbiased estimator and maxi-

mum likelihood estimators are used to obtain system reliability. Using both unbiased

estimator and maximum likelihood estimator, optimal reliability test plans are de-

signed satisfying the probability requirements of Type-I and Type-II error constraints.

Several numerical results are illustrated and compared with the existing results. The

proposed test plan has significant savings in testing costs as compared to that in the
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existing plans in literature.

Chapter 3 presents optimal reliability test plans for a series system with n different

components. The data are obtained from Type-II censoring, with the assumption that

components have lifetimes that are exponentially distributed random variables, and

failure rates of components depend on k covariates. Initially, a reliability test plan is

constructed using the system reliability estimate obtained from unbiased estimator

of failure rate. Through this work, it is shown that for a series system, the optimum

design depends on the cost of individual components and that all components in the

system need not be tested equally. Unlike most of the plans available in the literature,

in the proposed plan, the acceptance constant d∗ and the optimum sample size for each

component depends upon the testing costs of individual components. The proposed

test plan has an advantage of about 79% savings in testing costs as compared to

that in the existing literature. Secondly, a maximum likelihood estimators of failure

rates are used to obtain MLE of system reliability. The maximum-total-expected-

testing-cost expression is obtained. Since it is difficult to minimize random testing

cost involved in Type-II censoring, an optimization problem is formulated to minimize

maximum-total-expected-testing-cost, and optimal parameters are obtained subject

to the requirements of Type-I and Type-II error constraints. It is observed that

optimum design depends upon the cost of individual component and the number of

components in the system. The acceptance constant d∗M and the optimum sample size

for each component are depending upon testing costs. A simulation study conducted

shows that in the proposed model, the derived sampling plans meet the specified

risks α and β. Also, from sensitivity analysis studies, it is clear that the model is

sensitive to its parameters and the corresponding output is stable. It is observed

that the percentage of components to be tested for failure is reduced by about 96%.

Also, there is a significant reduction in testing costs of about 77% as compared to

that with Rajgopal and Mazumdar (1996: [82]). Similarly, it is observed that there

is a significant reduction in testing costs of about 96% as compared to that with

Vellaisamy and Kumar (2010: [73]).
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Chapter 4 discusses the design of optimal reliability test plan for a series and paral-

lel system with failure rates of components as random variables, having Quasi-density.

The data are obtained through the Type-I censoring scheme, and the reliability es-

timator is obtained by estimating a Bayesian estimator of component failure rates.

Some numerical examples are also computed to illustrate the Bayesian approach of

estimating system reliability and thereby to test the system reliability. The proposed

Bayesian plan has about 70% savings in total testing costs.

Chapter 5 focuses on constructing acceptance sampling plan for Weibull distri-

bution using constant stress partially accelerated life test by obtaining data using

Type-II censoring scheme. Two different stress relations, namely, linear and Arrhe-

nius relationships are considered. The maximum likelihood estimates of an unknown

parameter of Weibull distribution and acceleration factor are obtained in a linear

life-stress model, and corresponding optimal acceptance sampling plan is developed.

Similarly, the maximum likelihood estimates of model parameters are obtained in case

of Arrhenius life-stress relationship, and the corresponding optimal sampling plan is

developed satisfying the requirements of Type-I and Type-II error constraints. Since

the test cost involved in constructing an acceptance sampling plan is random, an

expression for expected testing cost is given. It is observed that when the values of

producer’s and consumer’s risks decrease, the testing cost is increasing in both the

linear and Arrhenius life-stress relationships, and it is noted that the total expected

testing cost is less in Arrhenius model as compared to linear model. It is also observed

that Arrhenius model is more cost-effective than the linear model.

Chapter 6 discusses the general degradation path model, the exponential degrada-

tion model, and illustrates the reliability estimation methodology. Bayes estimate of

scale parameter α of Weibull distribution of degradation parameter θ (rate of degra-

dation) is obtained. Bayesian reliability of first kind and second kind for the system

are computed under informative and noninformative priors. The bootstrap method is

used for finding standard error of Bayes estimator of α with respect to both informa-

tive and noninformative priors. Gibbs sampling procedure is applied for estimating

reliability. In both informative and non-informative prior cases, it is observed that the
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estimated system reliability approaches the actual reliability when the sample size in-

creases. In the case of Quasi prior, if k = 1, we will get maximum likelihood estimator

of system reliability. It is also observed through a numerical computation that, the

estimated reliability is almost the same as the original reliability when k = 1. Several

numerical examples are presented, and it is observed that in both informative and

noninformative prior cases, the standard error decreases when the bootstrap sample

size increases. Thus one can have a Bayesian reliability estimator by using minimum

variance Bayes estimator of α.

Chapter 7 presents conclusions of research work and scope for future research.



Chapter 2

Design of Optimal Reliability Test
Plan for a Parallel System in the
Presence of Covariates

2.1 Introduction

In most real-life situations, the lifetime of a system (series/parallel/mixed type) is

influenced by risk factors, which are called covariates. The fundamental notion of

reliability theory is the failure time of a system and its covariates. These covariates

change stochastically and may influence and/or indicate the failure time. For example,

modeling crack size of the fuselage of an aircraft that is affected by continuously vary-

ing covariates such as temperature, pressure, etc. is necessary for assessing reliability.

Hence, it is difficult to assess reliability with traditional life tests that record only fail-

ure time. Several of the component reliability test plans addressed in the literature so

far, are such that, either optimal test times for all the components are determined (for
∗Some results of this chapter are published in the following papers.

P. N. Bajeel and M. Kumar.:A component reliability test plan for a parallel system with failure rate
as the exponential function of covariates. Mathematics in Engineering, Science & Aerospace. Cambridge
Scientific Publishers, Cambridge; I&S Publishers, USA. Vol. 6 (2), pp. 177–191, (2015) - (Scopus indexed).

P. N. Bajeel and M. Kumar.:Optimal Reliability Test Plan for a Parallel System with Covariate In-
formation. Proceedings of National Conference on Emerging Trends in Statistical Research: Issues and
Challenges held at Department of Statistics, Pondicherry University, Feb. 16-17, Narosa Publishing House
Pvt. Ltd., ISBN: 978-81-8487-558-4. pp. 61-71, (2016).
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series/parallel systems) by assuming components lifetimes are independently and ex-

ponentially distributed random variables, or optimum number of each component to

be tested is determined (for series/parallel systems) by assuming that their lifetimes

to be exponentially distributed random variables with constant unknown failure rates.

Some of the references related to this topic are [9,11,14,29,36,59,82,83,99]. The opti-

mal test times or the optimal number of components to be tested, are reported under

various situations in these papers are not realistic. In other words, they are supposed

to be used under normal working conditions regardless of the environment in which

component testing is carried out. Consider the reliability test plan proposed in [10],

in which failure rate changes dynamically with respect to time. Here, components

are assumed to have piecewise constant failure rates.

The test programs in general, can be conducted at various levels; for example,

component, subsystem, and system level. The advantages of component-level tests

are described in [80,81]. In short, system level tests are generally more expensive and

time-consuming. Thus most often, component testing provides a superior alternative,

as long as the system-level objectives are followed. More discussions on component

reliability test plans can be seen in [29].

In the paper [79], an optimization problem is formulated for deriving the minimum-

cost component-testing plans when a Type-II censored component-test procedure is

used for a parallel system. Rajgopal and Mazumdar (1996: [82]) designed a reliability

test plan under Type-II censoring scheme. In their plan, each component has to be

tested equally, and the optimal sample size does not depend upon the number of

components in the system and, hence it is enough to test a single component system.

Yan and Mazumdar (1987: [100]) designed a reliability test plan for a parallel system

with Type-II censoring. They also have considered the failure rate as constant, but

unknown. They provide a criterion for accepting or rejecting the system based on the

product of the total times on the test for each component. Rajgopal and Mazumdar

(1988: [79]) considered the problem of acceptance testing for a parallel system of

different components having constant failure rates. They use both Type-I and Type-

II censoring scheme for obtaining data. Their paper provides a criterion for accepting
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or rejecting the system based on the sum of the logarithms of the total times on test

for each component.

This chapter explores the reliability test plans for a highly reliable parallel system

consisting of n different components with the assumption that components have life-

time that are exponentially distributed random variables, and the failure rates of the

components depend on k covariates x1, x2, ..., xk, such as room temperature, humid-

ity, pressure, etc. through exponential relationship. The data is obtained through

Type-II censoring. The failure rate λi(x) can be expressed as

λi(x) = e

k∑
j=1

βijxj
= eβi1x1+βi2x2+...+βikxk ,

where βij ∈ R, i = 1, 2, ..., n; j = 1, 2, ..., k and x = (x1, x2, ..., xk). Then the parallel

system reliability for unit time is given by R = 1−
n∏
i=1

(1− e−λi(x)). Since the system

is highly reliable, the system reliability can be approximated as

R = 1−
n∏
i=1

(1− e−λi(x)) ' 1−
n∏
i=1

λi(x).

This chapter is organized as follows: In Section 2.2, using unbiased estimator of

failure rates, a component reliability test plan for a parallel system with failure rate

as the exponential function of covariates is designed. Definition of acceptance rule

and normal approximation of the distribution of test statistics using Delta method are

given in Sections 2.2.1 and 2.2.2 respectively. The problem in this case, is formulated

in Section 2.2.3 and the corresponding optimal design is developed. An algorithm is

given in Section 2.2.4 to obtain the optimal design. Numerical results and comparisons

are given in Section 2.2.5. In Section 2.3, another optimal reliability test plan for a

parallel system with covariate information is constructed, using MLEs of failure rates.

The maximum likelihood estimator of failure rates are obtained in Section 2.3.2. In

Section 2.3.3, an acceptance rule based on maximum likelihood estimator of system

reliability is defined. Normal approximation for distribution of test statistics obtained

in Section 2.3.3, is explained in Section 2.3.4. A concept of acceptable reliability

interval (ARI) and unacceptable reliability interval (URI) are defined in Section 2.3.1.

The optimization problem is formulated and optimal design is developed in Section
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2.3.5. In Section 2.3.6, an algorithm is given to illustrate the optimal design developed

in Section 2.3.5. Numerical illustration and comparative studies are discussed in

Section 2.3.7. The conclusions are drawn in Section 2.4. The statements and proofs

of Lemma’s are included in the appendix.

2.2 Component reliability test plan with failure rate as the
exponential function of covariates: Unbiased estimation
approach.

In this section, reliability test plans for a highly reliable parallel system consisting of

n different components with the assumption that components have lifetime that are

exponentially distributed random variables, and the failure rates of the components

depend on k covariates x1, x2, ..., xk, such as room temperature, humidity, pressure

(see, [88]) through exponential relationship is designed. The failure rate λi(x) can be

expressed as

λi(x) = e

k∑
j=1

βijxj
= eβi1x1+βi2x2+...+βikxk ,

where βij ∈ R, i = 1, 2, ..., n; j = 1, 2, ..., k and x = (x1, x2, ..., xk). Then the parallel

system reliability for unit time is given by R = 1−
n∏
i=1

(1− e−λi(x)). Since the system

is highly reliable, the system reliability can be approximated as

R = 1−
n∏
i=1

(1− e−λi(x)) ' 1−
n∏
i=1

λi(x).

The analysis and construction of reliability test plan is based on unbiased estimators

of failure rates. The aim is to obtain system reliability estimate based on these

unbiased estimators.

A system is said to be satisfactory for unit time period, ifR, the survival probability

is greater than or equal to R1, the acceptable reliability level (ARL), and it is said

to be unsatisfactory if R is less than or equal to R0, the unacceptable reliability level

(URL), where R0 and R1 are constants such that 0 < R0 < R1 < 1. Then the
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following relations are true.

R ≥ R1 ⇒
n∏
i=1

e

k∑
j=1

βijxj
≤ (1−R1)⇒

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1).

R ≤ R0 ⇒
n∏
i=1

e

k∑
j=1

βijxj
≥ (1−R0)⇒

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0).

Let Xi denote the lifetime of i − th component, 1 ≤ i ≤ n, which is independent

and follows Exponential distribution with parameter λi(x). Assume that the prior

information in the form of upper bound ui(x) for each failure rate λi(x) is known from

the previous experiments, and which depends on covariates. Test the i−th component

ri times for failure. Then the sum of ri failure times is denoted by Ti =
ri∑
j=1

Xij, where

Xij denote the lifetime of j − th component of type i. Note that Ti follows Gamma

distribution with parameters λi(x) and ri, 1 ≤ i ≤ n. Then the probability density

function of Ti is given by

f(ti, λi(x), ri) =
(λi(x))ri

Γri
e−λi(x)titri−1

i .

In this section, λi is considered as a function of covariates and the unbiased estimator

for λi(x) is given by λ̂i = ri−1
Ti

. Note that the same estimator was obtained in [82]

when λi’s are constant.

2.2.1 An acceptance rule based on λ̂i

Since for a highly reliable parallel system, the reliability of the system for unit time

period is approximately given by R ' 1−
n∏
i=1

λi(x). Therefore, accept the system iff

the estimator of the system reliability R̂ = 1−
n∏
i=1

ri − 1

Ti
grater than or equal to some

number d, where d ∈ (0, 1). Then

R̂ ≥ d⇒ 1−
n∏
i=1

ri − 1

Ti
≥ d⇒

n∑
i=1

ln

(
ri − 1

Ti

)
≤ ln(1− d).
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That is, accept the system if and only if S =
n∑
i=1

ln

(
ri − 1

Ti

)
≤ d0, where d0 =

ln(1− d), otherwise reject the system.

2.2.2 Normal approximation of distribution of S using Delta method

In probability and statistics, the delta method is a result concerning the approxi-

mate probability distribution for a function of an asymptotically normal statistical

estimator. It was first described in 1938 by Robert Dorfman (see, [51]). Recall that

Ti follows Gamma distribution with mean µi =
ri

λi(x)
and variance σ2

i =
ri

(λi(x))2 .

Define g(Ti) = ln

(
ri − 1

Ti

)
, then

g′(Ti) =
−1

Ti
, g(µi) = ln

(
ri − 1

µi

)
= ln

(
(ri − 1)λi(x)

ri

)

and g′(µi) =
−λi(x)

ri
. Then by Delta method g(Ti) follows Normal distribution with

mean g(µi) = ln
(
ri−1
ri
λi(x)

)
and variance

(g′(µ))
2
σ2(Ti) =

(
−λi(x)

ri

)2(
ri

(λi(x))2

)
=

1

ri
.

That is,

g(Ti) ≈ N

(
ln

(
ri − 1

ri
λi(x)

)
,

1

ri

)
.

Define

S = g(T ) =
n∑
i=1

g(Ti) =
n∑
i=1

ln

(
ri − 1

Ti

)
,

then by Lindeberg central limit theorem, S follows Normal distribution with mean
n∑
i=1

ln

(
ri − 1

ri
λi(x)

)
and variance

n∑
i=1

1

ri
.

2.2.3 Problem formulation and optimal design

Let the cost of testing the i − th component be denoted by ci. Note that here ci

is a constant cost, which can be fixed based on experience. Then based on Type-II

censoring scheme, the total cost for testing is C =
n∑
i=1

ciri. Similar cost expression can
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be seen in [82]. Then the problem is to minimize C subjected to the requirements of

producer’s risk and consumer’s risk.

That is, the Problem P :

min
ri

C =
n∑
i=1

ciri

such that

P (Reject the system | System is good) < α, (2.2.1)

P (Accept the system | System is bad) ≤ β, (2.2.2)

where 0 < α, β < 1. In above Inequalities, α is usually known as producer’s risk, and

β is known as consumer’s risk. Using the acceptance rule defined in Section 2.2.1, the

constraints 2.2.1 and 2.2.2 can be written as

P

(
n∑
i=1

ln

(
ri − 1

Ti

)
≤ d0 |

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1)

)
≥ 1− α, (2.2.3)

P

(
n∑
i=1

ln

(
ri − 1

Ti

)
≤ d0 |

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0)

)
≤ β, (2.2.4)

Note that λi(x) ≤ ui(x) for all i = 1, 2, ...n⇒
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ...n.

Then in terms of probability of acceptance, constraint 2.2.3 states that the probability

of acceptance should be at least 1−α for all combinations of λi(x) values that satisfy
n∑
i=1

k∑
j=1

βijxj ≤ ln(1 − R1). That is, the minimum probability of acceptance over all

such λi(x) should exceed 1 − α. The constraint 2.2.4 states that the probability

of acceptance should be at most β for all combinations of λi(x) values that satisfy
n∑
i=1

k∑
j=1

βijxj ≥ ln(1 − R0). That is, the maximum probability of acceptance over

all such λi(x) should not exceed β. Also
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ...n.

Therefore constraints 2.2.3 and 2.2.4 can be rewritten as

min
βij

P

(
n∑
i=1

ln

(
ri − 1

Ti

)
≤ d0 |

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1)

)
≥ 1− α, (2.2.5)
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max
βij

P

(
n∑
i=1

ln

(
ri − 1

Ti

)
≤ d0 |

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0)

)
≤ β. (2.2.6)

with the common upper bound condition
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ..., n.

Recall that
n∑
i=1

ln

(
ri − 1

Ti

)
has mean

n∑
i=1

ln

(
ri − 1

ri
λi(x)

)
and variance

n∑
i=1

1

ri
. Let

Z =

n∑
i=1

ln
(
ri−1

Ti

)
−

n∑
i=1

ln
(
ri−1

ri

)
−

n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

1

ri

∼ N(0, 1). Then using normality, constraints

2.2.5 and 2.2.6 can be written as

min
βij

P

Z ≤
d0 −

n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1)

 ≥ 1− α,

(2.2.7)

max
βij

P

Z ≤
d0 −

n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0)

 ≤ β

(2.2.8)

with the common upper bound condition
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ..., n.

Since the cumulative distribution function of standard normal random variable is

strictly increasing function in its parameters, the constraints 2.2.7 and 2.2.8 can be

written as

min
βij


d0 −

n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1)

 ≥ Z1−α,

(2.2.9)

max
βij


d0 −

n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0)

 ≤ Zβ,

(2.2.10)
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where, d0 ∈ (ln(1−R1), ln(1−R0)) with the common upper bound condition

k∑
j=1

βijxj ≤ ln ui(x), i = 1, 2, ..., n.

Now consider the left hand side of the constraint 2.2.9

min
βij

d0 −
n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

(2.2.11)

such that
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1), (2.2.12)

k∑
j=1

βijxj ≤ ln ui(x) ∀ i = 1, 2, ..., n. (2.2.13)

Now consider the two different cases presented below:

Case 1: If
n∑
i=1

lnui(x) ≥ ln(1−R1).

Under this case, the constraint 2.2.12 implies that it is enough to minimize the objec-

tive function 2.2.11 subjected to
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ..., n. Since this is

a convex linear programming problem in βij, the optimum lies on the boundary and

the minimum value of the objective function with the two constraints is given by

d0 −
n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

lnui(x)√
n∑
i=1

1

ri

Then the constraint 2.2.9 can be written as

d0 −
n∑
i=1

ln
(
ri−1
ri

)
−

n∑
i=1

lnui(x)√
n∑
i=1

1

ri

≥ Z1−α. (2.2.14)
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Since α is a small value less than 0.5, Z1−α > 0. Therefore above inequality 2.2.14

can be written as

(Z1−α)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
−

n∑
i=1

lnui(x)

)2

. (2.2.15)

Case 2: If
n∑
i=1

lnui(x) < ln(1−R1).

In this case, the optimum lies on the boundary, because the objective function and the

constraints are linear convex functions. Therefore, it is enough to find the minimum

value of the objective function 2.2.11 subjected to the constraints

n∑
i=1

k∑
j=1

βijxj = ln(1−R1), (2.2.16)

and
n∑
i=1

βijxj = lnui(x) ∀ i = 1, 2, . . . , n. (2.2.17)

This is a linear minimization problem with equality constraints. Clearly, the optimum

attains in any one of the corner points in the feasible region and the minimum value

of the objective function 2.2.11 with above two constraints 2.2.16 and 2.2.17 is given

by

d0 −
n∑
i=1

ln
(
ri−1
ri

)
− ln(1−R1)√

n∑
i=1

1

ri

.

Then constraint 2.2.9 can be written as

d0 −
n∑
i=1

ln
(
ri−1
ri

)
− ln(1−R1)√

n∑
i=1

1

ri

≥ Z1−α. (2.2.18)

Since α is a small value less than 0.5, Z1−α > 0. Therefore, above inequality 2.2.18

can be written as

(Z1−α)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
− ln(1−R1)

)2

. (2.2.19)
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Similarly, when β < 0.5, the constraint 2.2.10 can be written under Case 1 and Case

2 as,

(Zβ)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
−

n∑
i=1

lnui(x)

)2

. (2.2.20)

The optimization problem with constraints 2.2.9 and 2.2.10 can be written as two

separate problems P1 and P2 as follows:

Problem P1: If Case 1 is true, then

min
ri

C =
n∑
i=1

ciri

such that

(Z1−α)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
−

n∑
i=1

lnui(x)

)2

. (2.2.21)

(Zβ)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
−

n∑
i=1

lnui(x)

)2

. (2.2.22)

This is an integer programming problem and can easily be solved.

Problem P2: If Case 2 is true, then

min
ri

C =
n∑
i=1

ciri

such that

(Z1−α)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
− ln(1−R1)

)2

. (2.2.23)

(Zβ)2
n∑
i=1

1

ri
≤

(
d0 −

n∑
i=1

ln

(
ri − 1

ri

)
−

n∑
i=1

lnui(x)

)2

. (2.2.24)

Again, this is an integer programming problem and can easily be solved.

2.2.4 An algorithmic procedure to solve the Problem P

Let z∗c , r
∗
i , d

∗
0 and M denotes the optimum cost, optimum number of failures of

i− th component, optimum value of d0 and a large positive value respectively. Divide

(ln(1−R1), ln(1−R0)) into l equal subintervals of length δ(> 0).

Step 1: Read n, k, xj, ci, R0, R1, α, β, l and ui(x) for i = 1, 2, ..., n and
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j = 1, 2, ..., k.

Step 2: Set z∗c = M.

Step 3: Set δ = ln(1−R0)−ln(1−R1)
l

.

Step 4: If
n∑
i=1

ln (ui(x)) ≥ ln(1−R1), then go to Step 5. Else go to Step 17.

Step 5: Set d0 = ln(1−R1).

Step 6: If d0 ≤ ln(1−R0), then go to next Step 7. Else go to Step 10.

Step 7: Solve the integer optimization problem with constraints 2.2.21 and 2.2.22.

Step 8: If z < z∗c , then replace z∗c = z, r∗i = ri ∀ i = 1, 2, · · · , n and d∗0 = d0.

Step 9: Set d0 = d0 + δ and go to Step 6.

Step 10: If
n∑
i=1

lnui(x) < ln(1−R1), then go to next Step 11. Else go to Step 16.

Step 11: Set d0 = ln(1−R1).

Step 12: If d0 ≤ ln(1−R0), then go to next Step 13. Else go to Step 16.

Step 13: Solve the integer optimization problem with constraints 2.2.23 and 2.2.24.

Step 14: If z < z∗c , then replace z∗c = z, r∗i = ri ∀ i = 1, 2, · · · , n and d∗0 = d0.

Step 15: Set d0 = d0 + δ and go to Step 12.

Step 16: Display z∗c , r
∗
i ∀ i = 1, 2, · · · , n and d∗0.

Step 17: Exit.

2.2.5 Numerical results and comparison

In this section, the Problem P is solved using algorithm designed in Section 2.2.4. Nu-

merical results for two component parallel system with two covariates are presented.

Let X = (x1, x2) denote the covariate vector, c = (c1, c2) denote the cost vector and

u = (u1, u2) denote the upper bound vector, where u1 = x1
4(x1+x2)

and u2 = x2
3(x1+x2)

.

Then, the following Table 2.1 gives the optimum cost and corresponding sample sizes

for l = 250.
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Table 2.1: Reliability test plan R(α, β, R0, R1, c, X)

α β R0 R1 c X r∗1 r∗2 C
1 0.0001 0.0001 0.95 0.999 (1, 2.5) (3, 4.5) 6 5 18.5
2 0.0001 0.0001 0.99 0.999 (1.5, 2.5) (3, 4.5) 6 4 19
3 0.05 0.05 0.99 0.999 (1.5, 2.5) (3, 4.5) 2 2 8
4 0.0001 0.0001 0.90 0.990 (1, 2.5) (3, 4.5) 14 12 44

Consider Example 3 in Table 2.1. Here, a two component parallel system is consid-

ered with α = 0.05, β = 0.05. This system having covariates x1 = 3 and x2 = 4.5 is

accepted, if the system’s estimated reliability is grater than or equal to the acceptable

reliability level R1 = 0.999 and it is rejected if the system’s estimated reliability is

less than or equal to the unacceptable reliability level R0 = 0.99. The cost of testing

each component are c1 = 1.5 and c2 = 2.5 units. For this set of data, employing

proposed reliability test plan based on Type-II censoring, the optimal sample size

obtained for the first component is r1 = 2 and the same for the second component

is r2 = 2. For this r1 and r2, the total testing cost is found to be 8 units. Also,

for the case α = β = 0.05, R0 = 0.99 and R1 = 0.999, the plan proposed in [100]

has optimal sample sizes (5, 5) and corresponding testing cost 20 units, but in our

proposed plan, the optimal sample sizes are (2, 2) and the corresponding testing cost

is 8 units. Therefore, there is about 60% reduction in testing costs in case of Relia-

bility test plan R(α, β, R0, R1, c, X). The optimal sample sizes obtained by the

plan proposed in [72] is (2,1) and the corresponding testing cost is 5.5. Therefore,

the test plan derived using unbiased estimator of failure rate has savings in testing

cost compared to that obtained in [100], but the plan obtained in [72] has savings in

testing costs up to 58% compared to the developed test plan R(α, β, R0, R1, c, X).

The results are generated by running Visual C++ and LINGO 11 in tandem.



CHAPTER 2. OPTIMAL RELIABILITY TEST PLAN FOR PARALLEL SYSTEM 45

2.3 Component reliability test plan with failure rate as the
exponential function of covariates: Maximum likelihood
estimation approach.

The reliability test plan designed in Section 2.2, considers the acceptance rule based on

unbiased estimator of failure rates. The system will be accepted as long as reliability

estimator R̂ greater than some positive quantity in (0, 1). Note that in this case

of design, if R, the survival probability greater than or equal to R1, the acceptable

reliability level (ARL), the system is said to be satisfactory, and if R ≤ R0, the

unacceptable reliability level (URL), the system is said to be unsatisfactory, where

0 < R0 < R1 < 1. Note that the values of R0 and R1 are prefixed by reliability

practitioner based on past experience. For example, [100], [82], [88] and [72] proposes

reliability test plans based on ARL and URL. But, this satisfactory and unsatisfactory

definition become absurd when R0 < R < R1. Particularly, if R is in the right

neighborhood of R0 or in the left neighbourhood of R1. In practical situations, due to

cost constraints, it is very difficult to reject a system when the reliability of the system

is just below the acceptable reliability level R1, and to accept a system when the

reliability of the system is just above the unacceptable reliability level R0. Therefore,

in this section, ε−relaxed definitions for satisfactory and unsatisfactory levels for a

system is proposed.

Consider a parallel system with n different components. Let Xi denote the lifetime

of i − th component, 1 ≤ i ≤ n. Assume Xi, 1 ≤ i ≤ n, are independent and

have Exponential distribution with parameter λi(x). Further, assume that λi(x)

are unknown and are functions of k covariates x1, x2, ..., xk. Define λi(x) as the

exponential function of x, where x = (x1, x2, ..., xk). In most of the situations, past

data play essential role in testing the reliability of the system considered. Prior

information ui(x) in form of upper bound for λi(x), 1 ≤ i ≤ n is used. Test the

i − th component ri times for failure. Let Xij, 1 ≤ i ≤ n; 1 ≤ j ≤ k denote lifetime

of j − th component of type i. Observe that Xij follows Exponential distribution

with parameter λi(x), 1 ≤ i ≤ n; 1 ≤ j ≤ k. Then, for 1 ≤ i ≤ n, Ti =
ri∑
j=1

Xij, the

sum of the ri independent and identical exponential random variables follow Gamma
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distribution with shape parameter ri and scale parameter λi(x). Note that ri is a

predetermined number to be found later, satisfying usual probability requirements.

2.3.1 Definition of satisfactory and unsatisfactory system

A system is satisfactory for unit time, if the estimated system reliability R̂s is in

the acceptable reliability interval ARI given by IA =
{
R̂s | R1 − ε < R̂s < 1

}
={

R̂s | R1 − R̂s < ε
}

, and the system is unsatisfactory for unit time, if the estimated

system reliability R̂s is in the unacceptable reliability interval URI given by IU ={
R̂s | 0 < R̂s < R0 + ε

}
=
{
R̂s | R̂s −R0 < ε

}
, where ε is small positive predeter-

mined quantity, which can be fixed by expert opinion. Then the following relations

are obtained:

R1 − R̂s ∈ IA ⇒
n∏
i=1

e

k∑
j=1

βijxj
≤ (1−R1 + ε)⇒

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε).

R̂s −R0 ∈ IU ⇒
n∏
i=1

e

k∑
j=1

βijxj
≥ (1−R0 − ε)⇒

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε).

Note that the advantage of using ARI and URI in designing reliability test plan is

that the optimum design has a potential in reducing huge rejection cost of the system,

as compared to existing test plans. The same is discussed in Section 2.3.7.

2.3.2 Maximum likelihood estimator for the failure rate λi

Since for 1 ≤ i ≤ n, Ti =
ri∑
j=1

Xij is a random variable having Gamma distribution

with shape parameter ri and scale parameter λi(x), the probability density function

of Ti is given by

f(ti, λi(x), ri) =
(λi(x))ri

Γri
e−λi(x)titri−1

i .

Note that Ti’s are independently distributed gamma random variables. Then the

corresponding likelihood function and log-likelihood are given by

L(λi(x), ti, ri) = L =
(λi(x))ri

(Γri)
e−λi(x)ti(ti)

ri−1,
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and

logL = rilog(λi(x))− log(Γri)− λi(x)ti + (ri − 1)log(ti).

Then equating the derivative of the log-likelihood function to zero implies

∂logL

∂λi(x)
= 0⇒ ri

1

λi(x)
− ti = 0⇒ ri

1

λi(x)
= ti ⇒ λ̂i(x) =

ri
ti
.

λ̂i(x) =
ri
ti

is a maximum likelihood estimate. Then maximum likelihood estimator

of λi(x) is given by
ri
Ti

.

2.3.3 An acceptance rule based on λ̂i

Since a highly reliable parallel system is considered, the reliability of the system for

unit time period is approximately given by R(1) = R = 1 −
n∏
i=1

λi(x). Accept the

system iff the MLE of the system reliability R̂ = 1−
n∏
i=1

ri
Ti

is grater than or equal to

some number d0, where d0 ∈ (0, 1). Then

R̂ ≥ d0 ⇒ 1−
n∏
i=1

ri
Ti
≥ d0 ⇒ T =

n∑
i=1

ln

(
ri
Ti

)
≤ ln(1− d0).

That is, accept the system if and only if
n∑
i=1

ln

(
ri
Ti

)
≤ d, where d = ln(1 − d0),

otherwise, reject the system.

2.3.4 Normal approximation for distribution of T using Delta method

Note that it is very difficult to obtain the exact distribution of T =
n∑
i=1

ln

(
ri
Ti

)
, where

Ti follows Gamma distribution with mean µ =
ri

λi(x)
and variance σ2 =

ri
[λi(x)]2

.

Approximating the distribution of T by Normal distribution using well-known Delta

method (see, [83]), is the best choice. Note that Ti ≈ N

(
ri

λi(x)
,

ri
[λi(x)]2

)
. Define

g(Ti) = ln

(
ri
Ti

)
, then g′(Ti) =

−1

Ti
, g(µ) = lnλi(x) and g′(µ) =

−λi(x)

ri
. Using

properties of the asymptotic normality and efficiency of the MLE (see, [21] and [83]),

√
ri

(
ri
Ti
− λi

)
∼ N(0, λ2

i ).
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Then, by delta method g(Ti) follows Normal distribution with mean µg = g(µ) =

ln (λi(x)) and variance σg = (g′(µ))2 σ2(Ti) =
1

ri
. That is,

g(Ti) ≈ N

(
ln (λi(x)) ,

1

ri

)
.

By using Lindeberg central limit theorem, T =
n∑
i=1

g(Ti) =
n∑
i=1

ln

(
ri
Ti

)
follows Normal

distribution with mean
n∑
i=1

ln (λi(x)) and variance
n∑
i=1

1

ri
.

2.3.5 Problem formulation and optimal design

Let the cost of testing the i− th component be denoted by ci. Then, based on Type-

II censoring scheme, the total cost for testing a parallel system having n different

components, is C =
n∑
i=1

ciri. The proposed problem is to minimize C subjected to the

requirements of producer’s risk and consumer’s risk.

That is, Problem Q:

min
ri

C =
n∑
i=1

ciri

such that

P (Reject the system | System is good) < α, (2.3.1)

P (Accept the system | System is bad) ≤ β, (2.3.2)

where 0 < α, β < 1. In above inequalities, α is usually known as producer’s risk, and

β is known as consumer’s risk. Then the minimization problem can be rewritten as,

min
ri

C =
n∑
i=1

ciri

such that

P (Accept the system | System is good) ≥ 1− α, (2.3.3)

P (Accept the system | System is bad) ≤ β. (2.3.4)
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Now, using the acceptance rule defined in Section 2.3.3, the constraints 2.3.3 and

2.3.4 can be written as

P

(
n∑
i=1

ln

(
ri
Ti

)
≤ d |

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε)

)
≥ 1− α, (2.3.5)

P

(
n∑
i=1

ln

(
ri
Ti

)
≤ d |

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε)

)
≤ β, (2.3.6)

ri > 0 for all i = 1, 2, ..., n are integers, d = ln(1 − d0), d0 ∈ (0, 1). Note that

λi(x) ≤ ui(x) for all i = 1, 2, ...n ⇒
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ...n. Then

in terms of probability of acceptance, constraint 2.3.5 states that the probability of

acceptance should be at least 1 − α for all combinations of λi(x) values that satisfy
n∑
i=1

k∑
j=1

βijxj ≤ ln(1 − R1 + ε). That is, the minimum probability of acceptance over

all such λi(x) should exceed 1 − α. The constraint 2.3.6 states that the probability

of acceptance should be at most β for all combinations of λi(x) values that satisfy
n∑
i=1

k∑
j=1

βijxj ≥ ln(1 − R0 − ε). That is, the maximum probability of acceptance over

all such λi(x) should not exceed β. Since
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ...n, the

constraints (2.3.5) and (2.3.6) can be rewritten as

min
βij

P

(
n∑
i=1

ln

(
ri
Ti

)
≤ d |

n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε)

)
≥ 1− α, (2.3.7)

max
βij

P

(
n∑
i=1

ln

(
ri
Ti

)
≤ d |

n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε)

)
≤ β. (2.3.8)

with the common upper bound condition
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ..., n. Re-

call that Ti is a gamma random variable with shape parameter ri and scale parameter

λi(x). Let Z ∼ N(0, 1). Then, by using Lindeberg Central Limit Theorem, with mean

and variance obtained by Delta method for the random variable T =
n∑
i=1

ln

(
ri
Ti

)
(see
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Section 2.3.4), one can rewrite the constraints 2.3.7 and 2.3.8 as

min
βij

P

Z ≤
d−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε)

 ≥ 1− α, (2.3.9)

max
βij

P

Z ≤
d−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε)

 ≤ β, (2.3.10)

with the common upper bound condition
k∑
j=1

βijxj ≤ ln ui(x) for all i = 1, 2, ..., n

and Z =

n∑
i=1

ln

( ri
Ti

)
−

n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

1

ri

. Now, using the fact that the cumulative distribution

function of standard normal random variable, Z, is strictly increasing function in its

arguments, the constraints 2.3.9 and 2.3.10 can be rewritten as

min
βij


d−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε),
k∑
j=1

βijxj ≤ ln ui(x) ∀i

 ≥ Z1−α,

(2.3.11)

max
βij


d−

n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

|
n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε),
k∑
j=1

βijxj ≤ ln ui(x) ∀i

 ≤ Zβ.

(2.3.12)

Now consider the left hand side of the constraint 2.3.11,

min
βij

d−
n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri
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such that
n∑
i=1

k∑
j=1

βijxj ≤ ln(1−R1 + ε), (2.3.13)

k∑
j=1

βijxj ≤ ln ui(x) ∀i = 1, 2, ..., n. (2.3.14)

If
n∑
i=1

ln ui(x) ≥ ln(1 − R1 + ε), then by Lemma 2.5.1, the minimum value of the

objective function with constraints 2.3.13 and 2.3.14, is given by

d−
n∑
i=1

ln ui(x)√
n∑
i=1

1

ri

.

Thus the constraint 2.3.11 can be written as

d−
n∑
i=1

ln ui(x)√
n∑
i=1

1

ri

≥ Z1−α.

This implies

n∑
i=1

1

ri
≤

d−
n∑
i=1

ln ui(x)

Z1−α


2

. (2.3.15)

If
n∑
i=1

ln ui(x) < ln(1 − R1 + ε), then by Lemma 2.5.2, the minimum value of the

objective function with constraints 2.3.13 and 2.3.14, is given by

d− ln(1−R1 + ε)√
n∑
i=1

1

ri

.

Therefore, the constraint 2.3.11 can be written as

d− ln(1−R1 + ε)√
n∑
i=1

1

ri

≥ Z1−α.
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This implies
n∑
i=1

1

ri
≤
(
d− ln(1−R1 + ε)

Z1−α

)2

. (2.3.16)

Now consider the left hand side of constraint 2.3.12

max
βij

d−
n∑
i=1

k∑
j=1

βijxj√
n∑
i=1

1

ri

such that
n∑
i=1

k∑
j=1

βijxj ≥ ln(1−R0 − ε),

k∑
j=1

βijxj ≤ ln ui(x) ∀i = 1, 2, ..., n.

Then by Lemma 2.5.2, the maximum value of the objective function with the given

constraints, is given by

d−
n∑
i=1

ln ui(x)√
n∑
i=1

1

ri

.

Then the constraint 2.3.12 can be rewritten as

d−
n∑
i=1

ln ui(x)√
n∑
i=1

1

ri

≤ Zβ.

This implies

n∑
i=1

1

ri
≤

d−
n∑
i=1

ln ui(x)

Zβ


2

. (2.3.17)

Now, the optimization problem with constraints 2.3.11 and 2.3.12 can be written as

follows with two different cases:

Case 1: If
n∑
i=1

ln ui(x) ≥ ln(1−R1 + ε). Then the optimization problem becomes:

min
ri

C =
n∑
i=1

ciri
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such that

n∑
i=1

1

ri
≤

d−
n∑
i=1

ln ui(x)

Z1−α


2

, (2.3.18)

n∑
i=1

1

ri
≤

d−
n∑
i=1

ln ui(x)

Zβ


2

. (2.3.19)

Let M = min


d−

n∑
i=1

ln ui(x)

Z1−α


2

,

d−
n∑
i=1

ln ui(x)

Zβ


2 .

Then the above optimization problem can be rewritten as

min
ri

C =
n∑
i=1

ciri

such that
n∑
i=1

1

ri
≤M, (2.3.20)

where d ∈ [ln(1−R1 + ε), ln(1−R0 − ε)], and the optimum value of d can be found

by Lemma 2.5.3. This is an integer programming problem and can easily be solved.

Case 2: If
n∑
i=1

ln ui(x) < ln(1−R1 + ε)

min
ri

C =
n∑
i=1

ciri

such that

n∑
i=1

1

ri
≤
(
d− ln(1−R1 + ε)

Z1−α

)2

, (2.3.21)

n∑
i=1

1

ri
≤

d−
n∑
i=1

ln ui(x)

Zβ


2

. (2.3.22)
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Let M ′ = min


(
d− ln(1−R1 + ε)

Z1−α

)2

,

d−
n∑
i=1

ln ui(x)

Zβ


2 .

Then the above optimization problem can be rewritten as

min
ri

C =
n∑
i=1

ciri

such that

n∑
i=1

1

ri
≤M ′, (2.3.23)

where d ∈ [ln(1−R1 +ε), ln(1−R0−ε)], and the optimum value of d can be found by

Lemma 2.5.3. This is also an integer programming problem and can easily be solved.

2.3.6 An algorithm to solve Problem Q

Let n be the number of different components in the parallel system, k be the number

of covariates, xj be the value of the covariate, ci be the cost of testing the i − th

component. Let C denote the optimum cost and ri denote the optimum number of

components of type i to be tested for failures. The algorithm is described in following

steps.

Step 1: Input the values for n, k, xj, ci, R0, R1, ε, α, β and ui(x) for i = 1, 2, ..., n

and j = 1, 2, ..., k.

Step 2: M1 = max


 ln(1−R1 + ε)−

n∑
i=1

lnui(x)

Z1−α


2

,

 ln(1−R0 − ε)−
n∑
i=1

lnui(x)

Z1−α


2 .

Step 3: M2 = max


 ln(1−R1 + ε)−

n∑
i=1

lnui(x)

Zβ


2

,

 ln(1−R0 − ε)−
n∑
i=1

lnui(x)

Zβ


2 .

Step 4: M3 =

(
ln(1−R0 − ε)− ln(1−R1 + ε)

Z1−α

)2

.

Step 5: If
n∑
i=1

ln (ui(x)) ≥ ln(1−R1 + ε), then go to Step 6. Else go to step 8.

Step 6: M = min {M1,M2} .
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Step 7: Solve the integer programming problem

min
ri

C =
n∑
i=1

ciri

such that
n∑
i=1

1

ri
≤M,

ri’s are positive integers.

Step 8: If
n∑
i=1

ln (ui(x)) < ln(1−R1 + ε), then go to next step.

Step 9: M ′ = min (M3,M2) .

Step 10: Solve the integer programming problem

min
ri

C =
n∑
i=1

ciri

such that
n∑
i=1

1

ri
≤M ′,

ri’s are positive integers.

Step 11: Display the optimum cost C.

Step 12: Display ri ∀ i = 1, 2, ..., n.

Step 13: Exit

2.3.7 Numerical results and discussion

In this section, the Problem Q using algorithm designed in Section 2.3.6 is solved.

The numerical results for 10 component parallel system with 3 covariates are pre-

sented. Let X denote the covariate vector, c denote the cost vector and u denote the

upper bound vector of failure rates.

Example 2.3.7.1:

Let R0 = 0.95, R1 = 0.999, ε = 0.0001, α = 0.0001, β = 0.0001 and the vectors X =

(6, 8, 5), c = (8, 10, 5, 7, 12, 23, 31, 42, 54, 20) and u = (u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10), where

u1 =
x1

x1 + x2 + x3

, u2 =
x2

2(x1 + x2 + x3)
, u3 =

x3

0.75(x1 + x2 + x3)
, u4 =

x1

x1 + x2 + x3

,

u5 =
x2

2(x1 + x2 + x3)
, u6 =

x3

0.8(x1 + x2 + x3)
, u7 =

x1

1.1(x1 + x2 + x3)
,

u8 =
x2

1.9(x1 + x2 + x3)
, u9 =

x3

0.7(x1 + x2 + x3)
, u10 =

x1

(x1 + x2 + x3)
.

For this set of data, the optimum sample size vector is r = (14, 12, 18, 15, 12, 8, 7, 6, 5, 9)

and the corresponding optimum cost is C = 1674 units.
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Example 2.3.7.2:

In Example 1, if we take X = (15, 29, 20) and R0 = 0.8, then the corresponding

optimum sample size vector and cost are r = (1, 1, 2, 1, 1, 1, 1, 1, 1, 1) and C = 217

units respectively.

The following Table 2.2 gives the optimum cost, corresponding sample sizes and a

comparison of optimum costs with that in paper [72]. Let ε = 0.0001, the covari-

ate vector X = (6, 8, 5) and the upper bound vector of the failure rates u =(
x1

x1 + x2 + x3

,
x2

2(x1 + x2 + x3)

)
. r∗1, r∗2 and C∗ denote the optimum sample sizes

and optimum cost respectively obtained by proposed plan, and r1, r2 and C denote

the optimum sample sizes and optimum cost respectively obtained by the plan in

paper [72]. Let %CR denote the percentage of cost reduction of the proposed plan

as compared with the plan obtained in paper [72]. Note that, for example 6 in Table

2.2, there is about 70% cost reduction is available for the plan developed using MLE

approach.

Table 2.2: Numerical examples for two component system and comparison of results

α β R0 R1 c1 c2 r∗1 r∗2 C∗ r1 r2 C %CR
1 0.05 0.05 0.96 0.99 1 1 2 2 4 3 3 6 33.33
2 0.05 0.05 0.95 0.99 1 1 2 2 4 2 3 5 20
3 0.02 0.02 0.94 0.99 1 1 3 2 5 2 4 6 16.66
4 0.05 0.1 0.99 0.999 1 1 1 1 2 1 2 3 33.33
5 0.05 0.05 0.99 0.999 1 1 1 1 2 1 2 3 33.33
6 0.03 0.03 0.91 0.98 1.5 2 1 1 3.5 4 3 12 70.83
7 0.05 0.1 0.99 0.999 1.5 2 1 1 3.5 2 1 5 30
8 0.05 0.05 0.99 0.999 1.5 2 1 1 3.5 2 1 5 30

2.4 Conclusions

In this chapter, an optimal reliability test plan for a parallel system with failure rate

as the exponential function of covariates is designed. Maximum likelihood estimator

and unbiased estimator of failure rate are used to estimate system reliability. The

data are obtained through Type-II censoring scheme. Several numerical examples

are illustrated and compared with the existing results. It is observed that there is a
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significant reduction in testing costs of about 70% with the test plan obtained using

maximum likelihood estimator of failure rate. Also, system reliability is estimated

using unbiased estimator of failure rate; and in this case, an optimal reliability test

plan is obtained, as well. It is observed that the plan R(α, β, R0, R1, c, X) obtained

using unbiased estimation approach has an potential of reducing testing costs of about

60% as compared to that in [100].

2.5 Appendix

Lemma 2.5.1. Let f(x) =

a−
n∑
i=1

xi

b

 is a linear function of xi, i = 1, 2, ..., n,

where a < 0, b > 0, xi < 0, x = (x1, x2, ..., xn) and f(x) > 0, then

1. If
n∑
i=1

ci ≥ c, then the minimum value of f(x) subject to the constraints
n∑
i=1

xi ≤ c

and xi ≤ ci ∀ i = 1, 2, ..., n, where c and ci’s are negative constants, is attained
at xi = ci ∀ i = 1, 2, ..., n.

2. If
n∑
i=1

ci < c, then the minimum value of f(x) subject to the constraints
n∑
i=1

xi ≤ c

and xi ≤ ci ∀ i = 1, 2, ..., n, where c and ci’s are negative constants, is attained
at c.

Proof. 1. Since
n∑
i=1

ci ≥ c, the constraint
n∑
i=1

xi ≤ c is above our feasible region.

Therefore, it is enough to minimize f(x) =

a−
n∑
i=1

xi

b

 subject to xi ≤ ci ∀i =

1, 2, ..., n. Since this is a convex linear programming problem, the optimum lies

on the boundary and the optimum value of f(x) is

a−
n∑
i=1

ci

b

.

2. Since the given objective function and the constraints are linear convex functions,
the optimum lies on the boundary. Therefore, it is enough to find the minimum

value of f(x) subjected to the constraints
n∑
i=1

xi = c and xi = ci ∀i = 1, 2, ..., n.
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This is a linear minimization problem with equality constraints. Clearly, the
optimum attains at any one of the n+ 1 corner points

Cp
ij =

 c−
n∑

j=1,j 6=i
cj , if i = j

cj , if i 6= j

Then, clearly the minimum value of f(x) is

(
a− c
b

)

Lemma 2.5.2. Let f(x) =

a−
n∑
i=1

xi

b

 is a linear function of xi, i = 1, 2, ..., n,

where a < 0, b > 0, xi < 0, x = (x1, x2, ..., xn) and f(x) < 0. Then the maximum

value of f(x) subjected to the constraints
n∑
i=1

xi ≥ c and xi ≤ ci ∀ i = 1, 2, ..., n, where

c and ci’s are negative constants, is attained at xi = ci ∀ i = 1, 2, ..., n.

Proof. Since the given problem is a linear convex maximization problem, the optimum
value will be attained at corner points. Then, clearly the optimum value of f(x) isa−

n∑
i=1

ci

b


Lemma 2.5.3. Let f(x) =

(
x− a
b

)2

, where a < 0, x = (x1, x2, ..., xn) and x ∈

[−x0,−x1]; x0, x1 > 0. Then the maximum value of f(x) is M , where

M = max

{(
−x0 − a

b

)2

,

(
−x1 − a

b

)2
}
.

Proof. Case 1: a < −x0.

We have a < −x0 ⇒ a < −x1.
Then 0 < −x0 − a < −x1 − a

⇒ (−x0 − a)2

b2
<

(−x1 − a)2

b2
.

This implies the maximum value is
(−x1 − a)2

b2
.
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Case 2: a > −x1.

We have 0 > −x1 − a > −x0 − a
⇒ −x0 − a < −x1 − a < 0
⇒ (−x0 − a)2 > (−x1 − a)2

⇒ (−x0 − a)2

b2
>

(−x1 − a)2

b2
.

Therefore the maximum value is
(−x0 − a)2

b2
.

Case 3: −x0 ≤ a ≤ −x1.

We have −x0 − a < 0 < −x1 − a

⇒ (−x0 − a)2

b2
> 0 and

(−x1 − a)2

b2
> 0

Define M = max

{(
−x0 − a

b

)2

,

(
−x1 − a

b

)2
}

.

Then, clearly the maximum attains at M .



Chapter 3

Design of Optimal Reliability Test
Plan for a Series system in the
Presence of Covariates

3.1 Introduction

The fundamental objective of reliability testing is to evaluate the system reliability

and to demonstrate that the system will perform satisfactorily, prior to its deployment

to the concerned field. A reliability test plans have been constructed in the paper [12],

for a series system with redundant subsystems. In paper [13], a reliability test plan

for a series system is obtained by assuming a constant failure rate that depends upon

the mission performed. Later in 2010, a reliability test plan is designed for a series

system in the paper [73] under mixed censoring. In this work, they have shown that

optimal sample size is the same for all components.
∗Some results of this chapter are published in the following papers.

M. Kumar and P. N. Bajeel.:Design of component reliability test plan for a series system having
time dependent testing cost with the presence of covariates. Computational Statistics. Springer-Verlag
Germany. Vol. 33 (3), pp. 1267–1292, (2018) - (SCI & Scopus indexed).

P. N. Bajeel and M. Kumar.:Reliability test plan for a series system with variable failure rates. In-
ternational Journal of Quality & Reliability Management. Emerald Publishing Limited. Vol. 34 (6), pp.
849–861, (2017) - (Scopus indexed).

M. Kumar and P. N. Bajeel.:Design of optimal reliability test plans for series system in the presence
of covariates. Proceedings of KSCSTE, DST Sponsored International Conference on Advances in Applied
Probability, Graph Theory and Fuzzy Mathematics, held at St. Peters college, Kollenchery, Jan. 11-14.
ISBN:978-93-5174-243-2. pp. 51–61, (2014).

60
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Also it is noted that authors in paper [82] have shown that, under Type-II censoring

scheme, each component has to be tested equally, and the optimal common sample size

does not depend upon the number of components in the system, and hence, testing

an n component system is equivalent to testing a single component system. Here,

they assume that the failure rates are constant but unknown. It is to be observed

that in a realistic situation, this is not true since failure rate need not be a constant,

instead, it is affected by some environmental factors like temperature, humidity, etc.

called covariates. In literature, the design of test plans based on Type-II censoring

(see, [73, 82]) consider the testing cost as a constant quantity that does not depend

on time. It is to be noted that, in realistic situations, this is not true since the cost

of testing in general, is a function of time under Type-II censoring. However, no test

plans have been addressed in the literature that uses data obtained through Type-II

censoring, and reports that the optimal sample size for each component is different

for testing reliability of a series system.

In this chapter, the optimum design of component reliability test plan for a series

system is designed in the presence of covariates. In Section 3.2, reliability test plan

is constructed by assuming a normal testing cost and reliability is estimated using

unbiased estimator of failure rate of the components. This Section 3.2 organized in

section wise as follows: In Section 3.2.1, the problem is formulated. Section 3.2.2

describes the solution procedure for the optimization problem. In Section 3.2.3, the

developed optimal test plan is illustrated through examples, and the optimal testing

cost under the plan is compared with the costs associated with the plans available

in literature [82]. In Section 3.3, the maximum-expected-testing-cost of the system

is considered, and the system reliability is estimated using maximum likelihood esti-

mator of failure rates, and thereby corresponding optimal reliability test plan is de-

veloped. This Section 3.3 organized in section wise as follows: Section 3.3.1 presents

some preliminaries and formulation of the problem. Section 3.3.2 describes the solu-

tion procedure of the optimization problem stated in Section 3.3.1 and in Subsection

3.3.3, an algorithm is developed to solve the integer optimization problem formulated

in Section 3.3.2. In Section 3.3.4, proposed optimal test plans are illustrated through
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examples. When testing cost is fixed (constant), the proposed plan is compared with

the test plans obtained in [82] and [73]. It is observed that the proposed plan has

huge potential to reduce the total number of components to be tested for failure, as

compared to that obtained in [82] and [73]. A sensitivity analysis, simulation study,

and qualitative analysis are also presented in Section 3.3.7 and 3.3.6 respectively. The

conclusions are drawn in Section 3.4. Section 3.5 lists the appendix containing the

statement of lemmas and their proofs.

3.2 Component reliability test plan with constant testing
cost: Unbiased estimation approach

In this section, an optimal reliability test plan is designed for a series system having n

different components by assuming that the lifetime of each component follows expo-

nential distribution with variable failure rate as a parameter. That is, the failure rate

as a function of environmental factors, such as temperature, pressure etc is considered.

Type-II censoring scheme is used to obtain data. The decision rule for accepting the

system is based on reliability estimate of the system. That is, the acceptance criteria

based on system reliability estimate obtained using data from Type-II censoring.

3.2.1 Problem description

Let Xi denote the lifetime of i− th component in series system, 1 ≤ i ≤ n. Assume

Xi ∼ Exp(λi(x)), and are independent. The parameters λi(x), of the exponential

distributions depend upon k environmental factors (x = (x1, x2, ..., xk)) through linear

relationships. Here, it is assumed that xj > 0 for 1 ≤ j ≤ k. Therefore, λi(x) can be

written as

λi(x) = βix
T =

k∑
j=1

βijxj = βi1x1 + βi2x2 + ...+ βikxk,

where x = (x1, x2, ..., xk), βi = (βi1, βi2, ..., βik), βij ∈ R, i = 1, 2, ..., n; j = 1, 2, ..., k.

Let ui(x) be the upper bound for the i-th failure rate. Since λi(x) is the parameter

of exponential distribution,
k∑
j=1

βijxj > 0 ∀ i = 1, 2, ..., n.

The i-th component is tested ri times for failure and the lifetime Xij, 1 ≤ i ≤ n, 1 ≤
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j ≤ ri is observed. Then Ti =
ri∑
j=1

Xij is a random variable that follows a Gamma

distribution with shape parameter ri and scale parameter λi(x) and the expected value

of Ti is given by
ri

λi(x)
. Since Ti is a Gamma random variable, the expected value of

1

Ti
and

1

T 2
i

are
λi(x)

ri − 1
and

λ2
i (x)

(ri − 1)(ri − 2)
respectively. Therefore, the variance of

1

Ti

is given by
λ2
i (x)

(ri − 1)2(ri − 2)
. As E

[
1
Ti

]
= λi(x)

(
1

ri−1

)
, (ri−1)E

[
1
Ti

]
= λi(x). Thus,

the quantity ri−1
Ti

is an unbiased estimator of λi(x).

Since the system being considered is a series system, the system reliability R for

unit time period is given by e
−

n∑
i=1

λi(x)
. Using the unbiased estimator of failure rates,

an estimator of system reliability for unit time is given by R̂ = e
−

n∑
i=1

ri−1

Ti . If R̂ ≥ d,

then the system is accepted, otherwise it is rejected. Note that d ∈ (0, 1). That is,

R̂ ≥ d⇔ e
−

n∑
i=1

ri−1

Ti ≥ d⇔
n∑
i=1

ri − 1

Ti
≤ −ln d.

Hence, the system is accepted iff
n∑
i=1

ri − 1

Ti
≤ −ln d, otherwise it is rejected.

A system is said to be good if R, the reliability of the system for unit time is

greater than or equal to R1, the acceptable reliability level. Then,

R ≥ R1 ⇔
n∑
i=1

λi(x) ≤ −lnR1.

A system is said to be bad if R is less than or equal to R0, the unacceptable reliability

level. Then,

R ≤ R0 ⇔
n∑
i=1

λi(x) ≥ −lnR0.

The reliability levels R0 and R1 are constants such that 0 < R0 < R1 < 1.

Let the testing cost of the i-th component be ci and total testing cost of the system

be C(r) =
n∑
i=1

ciri, where r = (r1, r2, ..., rn). Similar type of testing cost expression

is used in [82]. Then, based on the above acceptance rule, we have the following

optimization problem:
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Minimize C(r)

such that

P (Accept the system | System is good) ≥ 1− α, (3.2.1)

P (Accept the system | System is bad) ≤ β, (3.2.2)

where 0 < β, 1− α < 1. The α and β in inequalities 3.2.1 and 3.2.2 are respectively

referred to as producer’s risk and consumer’s risk.

3.2.2 Optimal design and solution

Using the acceptance rule defined in Section 3.2.1, the above formulated optimization

problem can be written as follows:

Minimize C(r)

such that

P

(
n∑
i=1

ri − 1

Ti
≤ −ln d |

n∑
i=1

k∑
j=1

βijxj ≤ −lnR1

)
≥ 1− α, (3.2.3)

P

(
n∑
i=1

ri − 1

Ti
≤ −ln d |

n∑
i=1

k∑
j=1

βijxj ≥ −lnR0

)
≤ β, (3.2.4)

ri > 0 and integer ∀ i = 1, 2, ..., n, βij ∈ R.

The constraints 3.2.3 and 3.2.4 can be rewritten as

min
βij

P

(
n∑
i=1

ri − 1

Ti
≤ −ln d |

n∑
i=1

k∑
j=1

βijxj ≤ −lnR1

)
≥ 1− α, (3.2.5)

max
βij

P

(
n∑
i=1

ri − 1

Ti
≤ −ln d |

n∑
i=1

k∑
j=1

βijxj ≥ −lnR0

)
≤ β. (3.2.6)

The exact distribution of
n∑
i=1

ri−1
Ti

is not easy to obtain, and hence to make the problem

tractable, an approximate distribution of
n∑
i=1

ri−1
Ti

is obtained in the following. As ex-

plained in Section 3.2.1, note that E

(
ri − 1

Ti

)
= λi(x) and V ar

(
ri − 1

Ti

)
= (λi(x))2

ri−2
.
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It is further assumed that ri is greater than 2. When n is relatively large, the Linde-

berg Central Limit Theorem is invoked, so that the distribution of the test statistic
n∑
i=1

ri−1
Ti

is approximately normal with mean
n∑
i=1

λi(x) and variance
n∑
i=1

(λi(x))2

ri−2
. There-

fore, by using the property of cumulative distribution function of normal random

variable, the constraints 3.2.5 and 3.2.6 can be written as

min
βij


−ln d−

n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

|
n∑
i=1

k∑
j=1

βijxj ≤ −lnR1

 ≥ Z1−α, (3.2.7)

max
βij


−ln d−

n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

|
n∑
i=1

k∑
j=1

βijxj ≥ −lnR0

 ≤ Zβ, (3.2.8)

where, Z =

n∑
i=1

ri−1

Ti
−

n∑
i=1

k∑
j=1

βijxj√√√√√√ n∑
i=1

 k∑
j=1

βijxj

2

ri−2

. To solve the optimization problems given by the

inequalities 3.2.7 and 3.2.8, we invoke Lemma 3.5.3 (see Section 3.4 for statement

and proof). Therefore, by Lemma 3.5.3, it is sufficient to solve the optimization

problem on the boundary of feasible region. Hence 3.2.7 and 3.2.8 can be rewritten

as

min
βij


−ln d+ lnR1√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

|
n∑
i=1

k∑
j=1

βijxj = −lnR1

 ≥ Z1−α, (3.2.9)
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max
βij


−ln d+ lnR0√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

|
n∑
i=1

k∑
j=1

βijxj = −lnR0

 ≤ Zβ. (3.2.10)

Note that for α, β < 0.5, Z1−α > 0 and Zβ < 0. This implies−ln d ∈ (−ln R1,−ln R0).

Consider the optimization problem represented by left hand side (LHS) of the

constraint 3.2.9. For all α < 0.5, Z1−α > 0. Therefore, the optimum value of this

optimization problem is positive. To find the minimum value of the objective function,

it is enough to maximize the denominator. Hence, we have

Problem P(1)

Maximize
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

such that

n∑
i=1

k∑
j=1

βijxj = −lnR1,

ri > 2 ∀ i = 1, 2, ...n.

Problem P(1) is unbounded and has no solution. However, incorporating the priori

information in the form of upper bound on failure rates, Problem P(1) can be restated

as:

Problem P(2)

Maximize
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

such that

n∑
i=1

k∑
j=1

βijxj = −lnR1,

k∑
j=1

βijxj ≤ ui(x) ∀ i = 1, 2, ..., n,
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ri > 2 ∀ i = 1, 2, ...n.

Let xmin = Min{x1, x2, ..., xk} and m is the value of j corresponding to xmin. Then

for 1 ≤ i ≤ n, 1 ≤ j ≤ k and 1 ≤ p ≤ n, define

µpij =



ui(x)
xj

, if (i 6= p) and (j = m)

−lnR1−
∑
i 6=p

ui(x)

xmin
, if (i = p) and (j = m)

0, elsewhere.

Then, as per Lemma 3.5.4 (see Section 3.4 for statement and proof), the optimum

solution to Problem P(2) will be at any one of these µpij.

Consider the optimization problem represented by LHS of constraint 3.2.10. For

all β < 0.5, Zβ < 0. Therefore, the optimum value of this problem is negative and

hence to find the maximum value of the objective function, it is enough to maximize

the denominator. That is, we have

Problem P(3)

Maximize
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

such that

n∑
i=1

k∑
j=1

βijxj = −lnR0,

ri > 2 ∀ i = 1, 2, ...n.

Observe that P(3) is an unbounded optimization problem and has no solution. In-

corporation of the priori information in the form of upper bound on failure rates,

Problem P(3) can be redefined as:

Problem P(4)

Maximize
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2
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such that

n∑
i=1

k∑
j=1

βijxj = −lnR0,

k∑
j=1

βijxj ≤ ui(x) ∀ i = 1, 2, ..., n,

ri > 2 ∀ i = 1, 2, ...n.

Now, for 1 ≤ i ≤ n, 1 ≤ j ≤ k and 1 ≤ p ≤ n, define

γpij =



ui(x)
xj

, if (i 6= p) and (j = m)

−lnR0−
∑
i6=p

ui(x)

xmin
, if (i = p) and (j = m)

0, elsewhere.

Then by Lemma 3.5.4, the optimum solution to Problem P(4) will be at any one of

these γpij.

Observe that for Problem P(2) and Problem P(4) to be feasible, it is necessary

that
n∑
i=1

ui(x) ≥ −lnR0.

Let the optimum values of Problem P(2) and Problem P(4) be µp∗ij and γp∗ij re-

spectively. Then the optimization problem with constraints 3.2.9 and 3.2.10 can be

written as:

Problem P(5)

Minimize C(r)

such that

n∑
i=1

(
k∑
j=1

µp∗ij xj

)2

ri − 2
≤
(
−ln d+ lnR1

Z1−α

)2

,
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n∑
i=1

(
k∑
j=1

γp∗ij xj

)2

ri − 2
≤
(
−ln d+ lnR0

Zβ

)2

,

ri > 2 and integer ∀ i = 1, 2, ..., n, βij ∈ R,

provided

n∑
i=1

k∑
j=1

γp∗ij xj + ln d <

 ri − 2
k∑
j=1

γp∗ij xj




n∑
i=1

(
k∑
j=1

γp∗ij xj

)2

ri − 2

 ,

for all i = 1, 2, ..., n, where −ln d ∈ (−lnR1,−lnR0).

The problem P(5) is solved with the help of LINGO 11 software and Visual C++.

3.2.3 Numerical Results and Comparison

In this section, some numerical results to illustrate the test plan developed in Section

3.2.2 are presented. Further, these results are compared with those results obtained by

Rajgopal and Mazumdar (1996: [82]). For this comparison purpose, let n = 6, k = 3,

R0 = 0.8 and R1 = 0.99. Let X denotes the vector of environmental factors. The

common sample size and the optimal cost obtained through the test plan described

in [82] are denoted respectively by r∗ and z∗. Parameters r∗i , d∗ and z∗c denote

respectively the optimal sample size of the i-th component, the optimal value of d

and the optimal cost as per the test plan developed in Section 3.3.2. Table 3.1 gives

the optimum costs and corresponding sample sizes.
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Table 3.1: Numerical examples for six component system and comparison of results.

Parameters Example 1 Example 2 Example 3 Example 4
α 0.001 0.001 0.0001 0.0001
β 0.001 0.001 0.0001 0.0001
X 4, 60, 21 11, 39, 6 4, 60, 21 15, 22, 5
c1 7 100 7 1
c2 2 200 2 2
c3 8.3 250 8.3 3.5
c4 6 1500 6 5
c5 11 2500 11 8
c6 4.5 3000 4.5 4

u1
x1

65(x1 + x2)

x1
9(x1 + x2)

x1
65(x1 + x2)

x1
9x1 + 10x2

u2
x2

4(x1 + x2)

x2
4(x1 + x2)

x2
4(x1 + x2)

x2
2x1 + 4x2

u3
x3

59(x1 + x2)

x3
50(x1 + x2)

x3
59(x1 + x2)

x3
50x1 + 55x2

u4
1

67(x1 + x2)

1

51(x1 + x2)

1

67(x1 + x2)

1

51x1 + 60x2

u5
1

70(x1 + x2)

1

57(x1 + x2)

1

70(x1 + x2)

1

57x1 + 63x2

u6
1

63(x1 + x3)

1

55(x1 + x3)

1

63(x1 + x3)

1

59x1 + 55x3
r∗1 3 5 3 11
r∗2 18 22 24 29
r∗3 3 3 3 3
r∗4 3 3 3 3
r∗5 3 3 3 3
r∗6 3 3 3 3
z∗c 146.5 26650 158.4 130.5
d∗ 0.050325 0.0799449 0.0471286 0.0856984
r∗ 14 14 19 19
z∗ 543.2 105700 737.2 446.5

(%) Cost reduction 73.04 % 74.78 % 78.51 % 70.77 %

Consider the following two examples of a series system with 9 components and 3

environmental factors (covariates).

Example 3.2.3.1:

R0 = 0.8, R1 = 0.99, α = β = 0.0001, X = (15, 22, 5), C = (1, 2, 3, 5, 8, 4, 6, 7, 9),

u1 =
x1

2(x1 + x2)
, u2 =

x2

91(x1 + x2)
, u3 =

x3

80(x1 + x2)
, u4 =

1

87(x1 + x2)
, u5 =

x1

82(x1 + x2)
, u6 =

x2

90.5(x1 + x3)
, u7 =

1

92.5(x2 + x3)
, u8 =

1

83.5(x1 + x2 + x3)
,
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u9 =
x1

93.5(x1 + x2 + x3)
. Then the optimum values of r∗i ’s are r∗1 = 30, r∗2 = 3, r∗3 =

3, r∗4 = 3, r∗5 = 3, r∗6 = 3, r∗7 = 3, r∗8 = 3, r∗9 = 3 and z∗c = 162, d∗ = 0.0738664. Com-

paring the results obtained by using our plan with those obtained by Rajgopal and

Mazumdar (1996: [82]) in which the common sample size is 19 and the optimum cost

is 855, it is seen that the optimum cost is reduced by about 81%.

Example 3.2.3.2:

R0 = 0.8, R1 = 0.99, α = β = 0.0001, X = (9, 29, 4), C = (12, 23, 31, 42, 54, 60, 71, 85, 99),

u1 =
x2

4(x1 + x2)
, u2 =

x2

91(x2 + x3)
, u3 =

x1

80(x3 + x1)
, u4 =

x1

87(x1 + x2)
, u5 =

x1

82(x2 + x3)
, u6 =

x1

90.5(x3 + x1)
, u7 =

x3

91(x1 + x2)
, u8 =

x3

91(x2 + x3)
, u9 =

x3

80(x3 + x1)
.

Then the optimum values of r∗i ’s are r∗1 = 29, r∗2 = 4, r∗3 = 6, r∗4 = 3, r∗5 = 3, r∗6 =

3, r∗7 = 3, r∗8 = 3, r∗9 = 3 and z∗c = 1859, d∗ = 0.0862412. In this case, it can be seen

that total testing cost is reduced by about 78% as compared to the total cost involved

in test plan obtained in [82].

3.3 Component reliability test plan with time dependent test-
ing cost: MLE approach

Consider a series system having n different components. The aim is to design a

reliability test plan for a series system, with n different components, having lifetime

following Exponential distribution. The failure rates of components are assumed to

be linear function of covariates. That is, it is assumed that the parameters λi(x), 1 ≤
i ≤ n, of the exponential distributions depend upon covariate vector x ∈ Rk. All

covariates are assumed to be greater than zero (xi > 0, 1 ≤ i ≤ k). The dependence of

λi(x) on the k covariates (xi, i = 1, 2, ..., k), is described using the linear function given

by λi(x) =
k∑
j=1

βijxj = βi1x1 + βi2x2 + ...+ βikxk, βij ∈ R, i = 1, 2, ..., n; j = 1, 2, ..., k.

It is implicitly assumed throughout this section that βij and xj are such that for

i = 1, 2, ..., n, λi(x) =
k∑
j=1

βijxj > 0. The data is obtained through Type-II censoring,

and reliability test plan is designed by considering the testing cost as a function

of time, which is a random quantity. Observe that this is not considered so far in

the literature, when designing reliability test plans for series system using data from
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Type-II censoring.

3.3.1 Some Preliminaries and Problem Formulation

Consider a series system with n independent components. Let Xi denote the lifetime

of i− th component in the system, having Exponential distribution with parameters

λi(x), 1 ≤ i ≤ n, respectively. Then the system reliability R for unit time period

is given by R = Rs(1) = exp

(
−

n∑
i=1

λi(x)

)
. Test ri identical components of type i

to failure, and observe their lifetimes. In other words, during testing the component

of type i, any failed component is replaced with an iid component. Let Xij denote

the lifetime of j − th component of type i, j = 1, 2, ..., ri. Then, it is clear that, for

1 ≤ i ≤ n, Ti =
ri∑
j=1

Xij is a random variable having Gamma distribution with shape

parameter ri and scale parameter λi(x). The expected value and variance of 1/Ti

are given by λi(x)/(ri − 1) and (λi(x))2 / ((ri − 1)2(ri − 2)) respectively. Based on

(T1, T2, ..., Tn), the maximum likelihood estimator of λi(x) is given by ri/Ti, 1 ≤ i ≤ n.

A series system at time t = 1, is considered satisfactory if R ≥ R1, and, it is

considered to be unsatisfactory, if R ≤ R0, where R0 and R1 are constants such that

0 < R0 < R1 < 1. Here, R1 is called acceptable reliability level (ARL), R0 is called

unacceptable reliability level (URL). Note that R ≥ R1 ⇔
n∑
i=1

λi(x) ≤ −ln(R1), and

R ≤ R0 ⇔
n∑
i=1

λi(x) ≥ −ln(R0).

Since a reliable system will tend to have a small value for the quantity
n∑
i=1

λi(x),

which is the sum of failure rates of n components, it is reasonable to accept the

system when the MLE of system reliability R̂ = exp

(
−

n∑
i=1

(ri/Ti)

)
exceeds a value

d in (0, 1), which is to be determined later. Then,

R̂ ≥ d⇔ exp

(
−

n∑
i=1

(ri/Ti)

)
≥ d⇔

n∑
i=1

(ri/Ti) ≤ −ln(d).

Therefore, accept the system iff
n∑
i=1

(ri/Ti) ≤ −ln(d), otherwise reject it, where d ∈

(0, 1).
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Note that Ti =
ri∑
j=1

Xij denote the total test duration of testing ri components.

Let ci(t) denote the cost of testing i− th component for the time t, 1 ≤ i ≤ n. Then

ci(1) = ci denote cost of testing i − th component for unit time. Now, ci(Ti) is the

total cost of testing the component of type i for ri failures. That is, ciTi is total

testing cost for testing ri components, which is random. Hence, the total-expected-

testing-cost for i − th component (T (i)ETC) is given by ciE(Ti) = ciri
λi(x)

. Therefore,

the total-expected-testing-cost involved in testing n different components (i.e., for

i = 1, 2, ..., n) is given by TETC =
n∑
i=1

ciri
λi(x)

, which is a function of λi(x). Observe

that T (i)ETC is a decreasing function of λi(x). Since the total cost involved in testing

is
n∑
i=1

ciTi, which is random, it is natural to consider total expected cost in testing.

Hence, we propose to solve the following optimization Problem, Q1 based upon the

acceptance rule defined above.

Minimize TETC =
n∑
i=1

ciri
λi(x)

such that

P (Accept the system | System is good) ≥ 1− α, (3.3.1)

P (Accept the system | System is bad) ≤ β, (3.3.2)

where α and β are respectively the producer’s and consumer’s risk, 0 < β < 1−α < 1.

Here, Inequality 3.3.1 indicates that the producer’s risk is less than α, while the

Inequality 3.3.2 indicates that the consumer’s risk is at most β. Note that TETC is

the total expected cost of testing the entire series system.

3.3.2 Solution of the Problem Q1 and Optimal Design

Using the acceptance rule defined in Section 3.3.1, the Problem Q1, can be rewritten

as Problem Q2 as follows:

min
ri

TETC =
n∑
i=1

ciri
λi(x)
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such that

P

(
n∑
i=1

(ri/Ti) ≤ −ln(d) | R ≥ R1

)
≥ 1− α,

P

(
n∑
i=1

(ri/Ti) ≤ −ln(d) | R ≤ R0

)
≤ β.

The above optimization problem is intractable since it involves the unknown λi(x) in

objective function. Hence proceed as follows: since the total expected cost is strictly

a decreasing function of λi(x), the minimum value of λi(x) will give the maximum

value of total-expected-testing-cost. Let it be λ∗i . Note that TETC is maximum

for λi(x) = λ∗i . Then maximum-total-expected-testing-cost (MTETC) will occur for

λi(x) = λ∗i . Let T =
n∑
i=1

(ri/Ti) then, the following Problem Q3 which minimizes the

upper bound for total-expected-testing-cost (TETC) is considered. In other words,

we minimize the maximum expected cost involved in testing a series system.

min
ri

MTETC =
n∑
i=1

ciri
λ∗i

such that

P

(
T ≤ −ln(d)

∣∣∣∣ n∑
i=1

k∑
j=1

βijxj ≤ −ln(R1),
k∑
j=1

βijxj > 0 ∀ i

)
≥ 1− α, (3.3.3)

P

(
T ≤ −ln(d)

∣∣∣∣ n∑
i=1

k∑
j=1

βijxj ≥ −ln(R0),
k∑
j=1

βijxj > 0 ∀ i

)
≤ β, (3.3.4)

ri ≥ 1, are integers ∀ i = 1, 2, ..., n, βij ∈ R.

Now, in terms of probability of acceptance, Inequality 3.3.3, states that the probability

of acceptance should be at least 1 − α, for all λi(x) > 0. That is, the minimum

probability of acceptance over all such λi(x) should exceed 1 − α. Similarly, the

Inequality 3.3.4 states that the probability of acceptance should be at most β, for all

λi(x) > 0. This means that, the maximum probability of acceptance over all such
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λi(x) should not exceed β. Therefore, Inequality 3.3.3 and 3.3.4 can be rewritten as

min
βij

P

(
T ≤ −ln(d)

∣∣∣∣ n∑
i=1

k∑
j=1

βijxj ≤ −ln(R1),
k∑
j=1

βijxj > 0 ∀ i

)
≥ 1− α, (3.3.5)

max
βij

P

(
T ≤ −ln(d)

∣∣∣∣ n∑
i=1

k∑
j=1

βijxj ≥ −ln(R0),
k∑
j=1

βijxj > 0 ∀ i

)
≤ β. (3.3.6)

Note that the statistic T is a finite linear combination of independent Inverse gamma

random variables 1/Ti, i = 1, 2, ..., n. Although, the distribution function of T can

be obtained by making use of inversion formula (see the paper, [95] for more detail),

given by

P (T ≤ s) = F (s) =
1

2
− 1

π

∫ ∞
0

(
e−itsΦT (t)− e−itsΦT (−t)

2it

)
dt, (3.3.7)

where ΦT (t) is the characteristic function of T . F (s) cannot be evaluated analyti-

cally, and one has to resort to numerical integration techniques to approximate the

probability for given value of s. However, this cannot be used to obtain the tractable

optimization problem. Hence, we resort to apply well-known Delta method to get the

distribution of T . Then T =
n∑
i=1

(ri/Ti), where Ti follows Gamma distribution with

mean µi = ri/λi(x) and variance σ2
i = ri/ (λi(x))2. A well-known Delta method can

be used to get the approximate distribution of T (see, [83]). Note Ti ∼ N (µi, σ
2
i )

for all i = 1, 2, ..., n. Define g(Ti) = ri/Ti, then g′(Ti) = −1/T 2
i , g(µi) = λi(x) and

g′(µi) = −(λi(x))2/ri. Using the properties of asymptotic normality and efficiency of

the MLE (see, [21,83]),

√
ri

(
ri
Ti
− λi(x)

)
∼ N(0, (λi(x))2).

Then by Delta method g(Ti) follows Normal distribution with mean g(µi) = λi(x)

and variance (g′(µi))
2 σ2

i (Ti) = (λi(x))2/ri. That is,

g(Ti) ∼ N
(
λi(x), (λi(x))2/ri

)
.

By using Lindeberg central limit theorem, T =
n∑
i=1

g(Ti) =
n∑
i=1

(ri/Ti) follows Normal
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distribution with mean
n∑
i=1

λi(x) and variance
n∑
i=1

((λi(x))2/ri). Then by using the

property of cumulative distribution function of Normal distribution, the Inequalities
3.3.5 and 3.3.6 can be written as

min
βij


−ln(d)−

n∑
i=1

k∑
j=1

βijxj√√√√√√ n∑
i=1


(

k∑
j=1

βijxj

)2

ri


∣∣∣∣∣
n∑
i=1

k∑
j=1

βijxj ≤ −ln(R1),

k∑
j=1

βijxj > 0 ∀ i


≥ Z1−α, (3.3.8)

max
βij


−ln(d)−

n∑
i=1

k∑
j=1

βijxj√√√√√√ n∑
i=1


(

k∑
j=1

βijxj

)2

ri


∣∣∣∣∣
n∑
i=1

k∑
j=1

βijxj ≥ −ln(R0),

k∑
j=1

βijxj > 0 ∀ i


≤ Zβ , (3.3.9)

where, Z =

n∑
i=1

(ri/Ti)−
n∑
i=1

k∑
j=1

βijxj√√√√√√√√ n∑
i=1


 k∑
j=1

βijxj

2

ri


. In order to solve the optimization problem stated in

3.3.8 and 3.3.9, the following lemma is presented.

Lemma 3.3.1. Let f : Rnk −→ R be a function defined by

f(β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk) =

−ln(d)−
n∑
i=1

k∑
j=1

βijxj√√√√√√ n∑
i=1


(

k∑
j=1

βijxj

)2

ri


,

where −ln(d) > 0, d ∈ (0, 1), xj > 0, ri ≥ 1, are integers,
k∑
j=1

βijxj > 0 ∀ i, and

βij ∈ R, i = 1, 2, ..., n, j = 1, 2, ..., k. Then the following statements are true.

a) If −ln(d) ≥
n∑
i=1

k∑
j=1

βijxj, then f is strictly decreasing function of βij ∀ i =

1, 2, ..., n, j = 1, 2, ..., k.
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b) If −ln(d) <
n∑
i=1

k∑
j=1

βijxj and

n∑
i=1

k∑
j=1

βijxj + ln(d) <

 rq
k∑
j=1

βqjxj




n∑
i=1


(

k∑
j=1

βijxj

)2

ri



 ,

then f is strictly decreasing function of βij ∀ i = 1, 2, ..., n; j = 1, 2, ..., k; q =
1, 2, ..., n.

Proof: (see, Section 3.5.1).
By Lemma 3.3.1, it is sufficient to solve the optimization problem stated in Inequalities
3.3.8 and 3.3.9 on the boundary of feasible region. Hence, the Inequalities 3.3.8 and
3.3.8 can be rewritten as

min
βij


−ln(d) + ln(R1)√√√√√√ n∑
i=1


(

k∑
j=1

βijxj

)2

ri


∣∣∣∣∣
n∑
i=1

k∑
j=1

βijxj = −ln(R1),

k∑
j=1

βijxj > 0 ∀ i


≥ Z1−α, (3.3.10)

max
βij


−ln(d) + ln(R0)√√√√√√ n∑
i=1


(

k∑
j=1

βijxj

)2

ri


∣∣∣∣∣
n∑
i=1

k∑
j=1

βijxj = −ln(R0),

k∑
j=1

βijxj > 0 ∀ i


≤ Zβ . (3.3.11)

For α and β less than 0.5, Z1−α > 0 and Zβ < 0. This implies that −ln(d) ∈
(−ln(R1),−ln(R0)). Now, consider the optimization problem represented by LHS of

the constraints 3.3.10 and 3.3.11. Since the optimum values of these problems are

positive and negative respectively, the minimum and maximum are obtained by max-

imizing the denominators. That is, the LHS of 3.3.10 and 3.3.11, reduces to solving

the following problems:
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Problem Q4 Problem Q5

Maximize
n∑
i=1


(

k∑
j=1

βijxj

)2

ri

 Maximize
n∑
i=1


(

k∑
j=1

βijxj

)2

ri


such that such that

n∑
i=1

k∑
j=1

βijxj = −ln(R1)
n∑
i=1

k∑
j=1

βijxj = −ln(R0)

k∑
j=1

βijxj > 0 ∀ i = 1, 2, ..., n
k∑
j=1

βijxj > 0 ∀ i = 1, 2, ..., n

ri ≥ 1, are integers ∀ i = 1, 2, ..., n ri ≥ 1, are integers ∀ i = 1, 2, ..., n

βij ∈ R. βij ∈ R.

Examining the above problems, it is clear that by choosing some βij to be arbitrarily

small, we can increase the objective function indefinitely and hence feasibility can

always be maintained by making one or more of the other βij sufficiently large. Thus,

from the mathematical perspective, Problem Q4 and Problem Q5 are unbounded

problems and have no solutions. Also note that R = exp

(
−

n∑
i=1

λi(x)

)
, where all

the λi(x) are sufficiently small. While attempting to solve this unbounded problem,

it may give a solution, where the assumption that failure rates are linear functions

of covariates becomes invalid. Thus, the optimization problem itself is no longer

meaningful.

Given the obvious desirability of an acceptance rule that is based on maximum

likelihood estimation of failure rates, now examine a particular situation, where this

rule can be used in practice. In many instances, it is realistic to assume that some

priori information on component reliabilities available. If the component has been

used as part of some other system or in an earlier model of the present system, one
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may have some knowledge of its failure rate. In such instances, it would be logical to

incorporate this information into the design of test plan. Assume that upper bound

ui(x) on each of the failure rates λi(x) is known. Note that ui(x) need not be con-

stant, it will generally be a function of covariates. Similar assumption on failure rate

with constant upper bound can be seen in papers [13] and [83]. With this assumption,

the Problem Q4 and Problem Q5 can be rewritten as

Problem Q6 Problem Q7

Maximize
n∑
i=1


(

k∑
j=1

βijxj

)2

ri

 Maximize
n∑
i=1


(

k∑
j=1

βijxj

)2

ri


such that such that

n∑
i=1

k∑
j=1

βijxj = −ln(R1)
n∑
i=1

k∑
j=1

βijxj = −ln(R0)

k∑
j=1

βijxj > 0 ∀ i = 1, 2, ..., n
k∑
j=1

βijxj > 0 ∀ i = 1, 2, ..., n

k∑
j=1

βijxj ≤ ui(x) ∀ i = 1, 2, ..., n
k∑
j=1

βijxj ≤ ui(x) ∀ i = 1, 2, ..., n

ri ≥ 1, are integers ∀ i = 1, 2, ..., n ri ≥ 1, are integers ∀ i = 1, 2, ..., n

βij ∈ R. βij ∈ R.

The two problems are now well behaved, since it is no longer required to simply

drive one βij to an arbitrarily small value. Observe that in order for the above two

problems to be feasible, it is necessary that
n∑
i=1

ui(x) ≥ −ln(R0).

Define

µpij =



ui(x)
xj

, if (i 6= p) and (j = m),

−ln(R0)−
∑
i 6=p

ui(x)

xmin
, if (i = p) and (j = m),

0, elsewhere.
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γtij =



ui(x)
xj

, if (i 6= t) and (j = m),

−ln(R1)−
∑
i 6=p

ui(x)

xmin
, if (i = t) and (j = m),

0, elsewhere,

for p = 1, 2, ..., n; t = 1, 2, ..., n; i = 1, 2, ..., n; j = 1, 2, ..., k, where xmin = min-

imum of {x1, x2, ..., xk} and m is the value of j corresponding to xmin. The following

lemma paves the way for solving the optimization Problem Q6 and Q7.

Lemma 3.3.2. Let f : Rnk −→ R be a function defined by

f(β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk) =
n∑
i=1

( k∑
j=1

βijxj

)2

/ri

 ,

where xj > 0, ri ≥ 1, are integers,
k∑
j=1

βijxj > 0 and βij ∈ R, i = 1, 2, ..., n, j =

1, 2, ..., k. Then f is a convex function.

Proof: (see Section 3.5.2).

Then, by using Lemma 3.3.2, it can be shown that, assuming feasibility, the opti-

mum solution to above two maximization problem will be at any one of these µpij and

γtij respectively. We note that a similar solution procedure was employed by Rajgopal

and Mazumdar (1997: [83]). Define

λ∗i = minimum

{
k∑
j=1

µpijxj,
k∑
j=1

γtijxj

}
, 1 ≤ i ≤ n.

Then for p = 1, 2, ..., n; t = 1, 2, ..., n, the optimization problem with constraints

3.3.10 and 3.3.11 can be written as

Problem QM
min
ri

MTETC =
n∑
i=1

ciri
λ∗i

such that



CHAPTER 3. OPTIMAL RELIABILITY TEST PLAN FOR SERIES SYSTEM 81

n∑
i=1


(

k∑
j=1

µpijxj

)2

ri

 ≤ (−ln(d)+ln(R1)
Z1−α

)2

,

n∑
i=1


(

k∑
j=1

γtijxj

)2

ri

 ≤ (−ln(d)+ln(R0)
Zβ

)2

,

ri’s are positive integers ∀ i = 1, 2, ..., n, βij ∈ R,

where −ln(d) ∈ (−ln(R1),−ln(R0)). This is a non-linear integer programming prob-

lem. Next, an algorithm is presented in following section to obtain the optimal values

of λ∗i and ri for i = 1, 2, ..., n.

3.3.3 An Algorithm to Solve the Problem QM

Let z∗c , r
∗
i , λ

i
opt and d∗ denote the optimum cost, optimum number of failures of i− th

component, optimal values of λ∗i and optimum value of −ln(d) respectively.

1. Read n, k, xj, ci, R0, R1 and ui(x) for i = 1, 2, ..., n and j = 1, 2, ..., k.

2. Set flag = 0 and z∗c = 0.

3. Set xmin = minimum of {x1, x2, ..., xk}.

4. Set minj = The value of j corresponding to xmin.

5. If

(
n∑
i=1

ui(x) > −lnR0

)
, then go to Step 6. Else feasibility condition violated,

go to Step 1.

6. Set p = 1

7. If p < n go to Step 8. Else go to Step 19.

8. Set t = 1.

9. If t < n go to Step 10. Else go to Step 18.

10. Set λ∗i = minimum

{
k∑
j=1

µpijxj,
k∑
j=1

γtijxj

}
.
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11. Solve the optimization problem given by

min
ri

MTETC =
n∑
i=1

ciri
λ∗i

such that

n∑
i=1


(

k∑
j=1

µpijxj

)2

ri

 ≤ (−ln(d)+ln(R1)
Z1−α

)2

,

n∑
i=1


(

k∑
j=1

γtijxj

)2

ri

 ≤ (−ln(d)+ln(R0)
Zβ

)2

,

ri ≥ 1, are integers ∀ i = 1, 2, ..., n.

12. If
n∑
i=1

k∑
j=1

γtijxj + ln(d) <

 rt
k∑
j=1

γtijxj


 n∑
i=1


(

k∑
j=1

γtijxj

)2

ri


 , then go to Step 13.

Else go to Step 14.

13. Set flag = 1.

14. If (flag = 0) and (−z > −z∗c ) go to Step 15. Else go to Step 16.

15. Replace z∗c = z, r∗i = ri, λ
i
opt = λ∗i ∀ i = 1, 2, ..., n and d∗ = −ln(d).

16. Set flag = 0.

17. Set t = t+ 1 and go to Step 9.

18. Set p = p+ 1 and go to Step 7.

19. Exit.

3.3.4 Analysis and Comparison of Numerical Results

In this section, the Problem QM using the algorithm designed in Section 3.3.3 is

solved. Further, the results obtained by performing simulation, and sensitivity anal-

ysis are analyzed. Let x ∈ R3, r∗∗1 , z
∗∗
1 respectively denote common sample size

and optimal cost obtained by Rajgopal and Mazumdar (1996: [82]) and, r∗∗2 , z
∗∗
2 re-

spectively denote common sample size and optimal cost obtained by Vellaisamy and

Kumar (2010: [73]). Let z∗M and d∗M respectively denote optimal testing cost and op-

timal value of −ln(d) for the Problem QM . Consider a four component series system.
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Let k, the number of covariates be equal to 3. The following Table 3.3 give optimal

reliability test plans corresponding to the inputs given in Table 3.2.

Table 3.2: Inputs of numerical examples for four component series system

Example 1 Example 2 Example 3 Example 4
α 0.0001 0.05 0.05 0.001
β 0.0001 0.05 0.05 0.01
R0 0.85 0.85 0.83 0.823
R1 0.86 0.86 0.86 0.862
x 15, 27, 5 15, 27, 5 3, 5, 0.9 2.6, 35, 0.6
c1 1 8 1 0.5
c2 2 29 2 0.22
c3 3.5 15 3.5 0.12
c4 5 21 5 0.75

u1(x) 1
1.41x1

1
1.41x1

0.04752 1
0.55(x1+x2)

u2(x) 1
0.77x2

1
0.77x2

0.04852 0.04851

u3(x) 1
4.1x3

1
4.1x3

0.04952 1
6.31(x1+x3)

u4(x) 1
0.99(x1+x2)

1
0.99(x1+x2)

0.05052 0.05051

Let Oi, i = 1, 2, 3, 4, be optimal reliability test plans obtained using the inputs in

Example 1, Example 2, Example 3, Example 4, respectively, given in Table 3.2.

Table 3.3: Optimal reliability test plans for 4-component series system (for inputs given in Table3.2)

O1 O2 O3 O4

r∗1 5444 953 18 160
r∗2 2639 314 116 242
r∗3 1525 729 90 27
r∗4 688 214 78 139
z∗M 583813 868781 26788.9 7698.14
d∗M 0.156571 0.156356 0.165566 0.168692
λ1opt 0.0472813 0.0472813 0.00227114 0.0483559

λ2opt 0.0307111 0.0307111 0.0485172 0.04851

λ3opt 0.0487805 0.0487805 0.0495172 0.00112411

λ4opt 0.0183571 0.02405 0.0505173 0.05051

r∗∗1 9929 1944 246 391
r∗∗2 68576 13415 1573 2501

Remark: Observe that in case of Example 1, r∗∗1 = 9929, one has to test each of the

4 components equally 9929 times. Note that
n∑
i=1

r∗i = 10296. Hence, the percentage of
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total number of components to be tested for failure is reduced by about 74% using the

proposed plan, as compared to that in the paper [82]. Similarly, when r∗∗2 = 68576,

one has to test each of the 4 components equally 68576 times. Also
n∑
i=1

r∗i = 10296.

Thus, using proposed plan, the percentage of total number of components to be tested

for failure is reduced by about 96% as compared to that in the paper [73].

3.3.5 Comparison of Reliability Test Plans for the case of constant costs

In this section, a comparative study is presented by comparing the proposed test plan

results with the test plans obtained in the papers [82] and [73] (with fixed costs).

Consider the costs given in Table 3.2 as the cost of testing a unit, then for the same

inputs given in Table 3.2, the following table of results are obtained:

Table 3.4: Optimal reliability test plans (for inputs given in Table 3.2) given in the papers [82]
and [73]

O1 O2 O3 O4

r∗1 4452 836 112 94
r∗2 2823 341 80 145
r∗3 1301 630 62 200
r∗4 1073 262 29 48
z∗M 20016.5 31529 634 138.9
d∗M 0.156451 0.156381 0.166428 0.171082
r∗∗1 9929 1944 246 391
z∗∗1 114183.5 141912 2829 621.69
r∗∗2 68576 13415 1573 2501
z∗∗2 788624 979295 18089.5 3976.59

Case A 82.47 % 77.78 % 77.59 % 77.66 %
Case B 97.46 % 96.78 % 96.50 % 96.51 %

In the above table, Case A and Case B are defined as follows:

Case A : Cost reduction by test plan based upon MLE approach as compared to the

plan developed by Rajgopal and Mazumdar (1996: [82]).

Case B : Cost reduction by test plan based upon MLE approach as compared to the

plan developed by Vellaisamy and Kumar (2010: [73]).

It can be noted that significant reductions in testing costs are obtained in Case A

and Case B, by using test plans based on MLE approach, where constant testing
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cost is considered.

3.3.6 A simulation study of reliability sampling plans

In this section, a simulation study to establish the fact that the reliability sampling

plans derived in Section 3.3.2, meet the specified producer’s and consumer’s risks,

namely, α and β, adequately well, is conducted.

Consider a 4 component system with 3 covariates. Let R0 = 0.85, R1 = 0.86, α =

β = 0.05, the covariate vector X = (15, 27, 5), the cost vector c = (8, 29, 15, 21)

and the upper bounds for failure rates are u1 = 1
0.41x1

, u2 = 1
0.77x2

, u3 = 1
4.1x3

, u4 =
1

0.99(x1+x2)
. Then by the proposed plan, the optimum values of r∗i ’s are r∗1 = 836, r∗2 =

341, r∗3 = 630, r∗4 = 262 and z∗M = 31529, d∗M = 0.156381.

Now to simulate the lifetime of the four components with r∗1 = 836, r∗2 = 341, r∗3 =

630, r∗4 = 262 respectively, assume that the failure rate of the four components are

λ1(x) = 0.0472813, λ2(x) = 0.0307111, λ3(x) = 0.0487805, λ4(x) = 0.02405 respec-

tively. Then the simulated lifetimes of four components are shown in the following

figures.
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Figure 3.1: The simulated lifetime of
the first component.
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Figure 3.2: The simulated lifetime of
the second component.
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Figure 3.3: The simulated lifetime of
the third component.
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Figure 3.4: The simulated lifetime of
the fourth component.

Then the total lifetimes Ti, 1 ≤ i ≤ 4 for each components are given by T1 =

17672.5121, T2 = 10825.6396, T3 = 12506.3808 and T4 = 10348.2521. Accept the

system iff
n∑
i=1

ri
Ti
≤ −lnd. Here

n∑
i=1

ri
Ti

= 0.154496967. Clearly,
n∑
i=1

ri
Ti

= 0.154496967 ≤

−lnd = d∗M = 0.156381. Hence accept the system.

Next to establish the fact that the derived sampling plan meets the specified risk

α, note that T =
n∑
i=1

ri
Ti

asymptotically normally (AN) distributed random variable

with mean
n∑
i=1

λi(x) =
n∑
i=1

k∑
j=1

βijxj and variance
n∑
i=1

(λi(x))2

ri
=

n∑
i=1

(
k∑
j=1

βijxj

)2

ri
. Now from

the inequality 3.3.3,

P (T ≤ −ln(d)) ≥ 1− α. (3.3.12)

From the Algorithm given in Section 3.3.3, the optimum values of
k∑
j=1

β1jxj = 0.0472813,

k∑
j=1

β2jxj = 0.0307111,
k∑
j=1

β3jxj = 0.0487805,
k∑
j=1

β4jxj = 0.02405. Then T ∼

AN(0.1508229, 0.00001142465415481030).

The following figure shows the simulated plot of 10000 normal random variables

with mean 0.1508229 and variance 0.00001142465415481030. Note that, since the

variance is very small, all most all points are concentrated around the mean.
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Figure 3.5: The simulated Normal random variable T corresponding to the Inequality 3.3.3.

It is observed from the simulation that P (T ≤ 0.156381) = 0.9533, so that con-

straint in 3.3.12 satisfied well.

The producer’s risk β plays important role in reliability acceptance test plan. A

good reliability test plan should make sure that the probability of accepting a bad

system is as low as possible. By simulation, it is shown that, the proposed sampling

plan also meet the specified risk β. Note that T =
n∑
i=1

ri
Ti

follows Normal distribution

with mean
n∑
i=1

λi(x) =
n∑
i=1

k∑
j=1

γijxj and variance
n∑
i=1

(λi(x))2

ri
=

n∑
i=1

(
k∑
j=1

γijxj

)2

ri
. Now from

the Inequality 3.3.4,

P (T ≤ −ln(d)) ≤ β. (3.3.13)

From the Algorithm given in Section 3.3.3, the optimum values of
k∑
j=1

γ1jxj = 0.0472813,

k∑
j=1

γ2jxj = 0.0424071,
k∑
j=1

γ3jxj = 0.0487805,
k∑
j=1

γ4jxj = 0.02405. Then T ∼

AN(0.1625189, 0.000013932544087948). Then by simulation, check if the Inequality

3.3.13 holds well. That is if P (T ≤ 0.156381) ≤ 0.05 holds well or not.

Using MATLAB, simulate the normal random variables T . The following figure
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shows the simulated plot of 10000 normal random variables with mean 0.1625189 and

variance 0.000013932544087948.
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Figure 3.6: The simulated Normal random variable T corresponding to the Inequality 3.3.4.

It is observed from the simulation that P (T ≤ 0.156381) = 0.0489, so that con-

straint in 3.3.13 satisfied well.

3.3.7 Sensitivity analysis

The proposed optimization model Problem QM is a non-linear integer optimiza-

tion problem. Observe that the optimization Problem QM aims at minimizing the

Maximum-Total-Expected-Testing-Cost (MTETC), which is not the actual cost in-

volved in the problem. However, the actual cost will, in general be less than MTETC.

The right side of the first and second constraints identified in Problem QM in Section

3.3.2, contain input parameters R0, R1, α, β, and ci in the objective function. Note

that the computation of λ∗i also require the inputs R0, R1 and ui(x). Also the coeffi-

cients of 1
ri

in first and second constraints are calculated while running the algorithm

given in Section 3.3.3, and note that they are not prefixed constants. Therefore, a de-

tailed study on how the MTETC changes for small variations in the input parameters

R0, R1, α, β, and ci is presented.
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As an example, consider a three component system with three covariates. Let X

be the covariate vector given by (15, 27, 5). Assume that the upper bounds for failure

rates are given by u1(x) = 1
1.2x1

, u2(x) = 1
0.77x2

and u3(x) = 1
0.3x3

. The variation of

MTETC with respect to different parameters are shown in the following figures.
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Figure 3.7: Sensitivity of MTETC to changes
in α for fixed β = 0.05, c1 = 8, c2 = 29,
c3 = 15, R0 = 0.86 and R1 = 0.9.
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Figure 3.8: Sensitivity of MTETC to changes
in β for fixed α = 0.05, c1 = 8, c2 = 29,
c3 = 15, R0 = 0.86 and R1 = 0.9.
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Figure 3.9: Sensitivity of MTETC to changes
in R0 for fixed α = 0.05, β = 0.1130,
c1 = 8, c2 = 29, c3 = 15 and R1 = 0.9.
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Figure 3.10: Sensitivity of MTETC to changes
in R1 for fixed α = 0.05, β = 0.1130,
c1 = 8, c2 = 29, c3 = 15 and R0 = 0.86.
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Figure 3.11: Sensitivity of MTETC to changes
in c1 for fixed α = 0.05, β = 0.05,
c2 = 29, c3 = 15, R0 = 0.86 and R1 = 0.9.
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Figure 3.12: Sensitivity of MTETC to changes
in c2 for fixed α = 0.05, β = 0.05,
c1 = 8, c3 = 15, R0 = 0.86 and R1 = 0.9.
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Figure 3.13: Sensitivity of MTETC to changes
in c3 for fixed α = 0.05, β = 0.05,
c1 = 8, c2 = 29, R0 = 0.86 and R1 = 0.9.
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Figure 3.14: Sensitivity of MTETC to changes
in α and β for fixed c1 = 8, c2 = 29,
c3 = 15, R0 = 0.86 and R1 = 0.9.
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Figure 3.15: Sensitivity of MTETC to changes
in R0 and R1 for fixed α = 0.001,
β = 0.1100, c1 = 8, c2 = 29, and c3 = 15.
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Figure 3.16: Sensitivity of MTETC to changes
in c1 and c2 for fixed α = 0.05, β = 0.1130,
c3 = 15, R0 = 0.8 and R1 = 0.85.
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Figure 3.17: Sensitivity of MTETC to changes
in c1 and c3 for fixed α = 0.05, β = 0.1130,
c2 = 29, R0 = 0.8 and R1 = 0.85.
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Figure 3.18: Sensitivity of MTETC to changes
in c2 and c3 for fixed α = 0.05, β = 0.1130,
c1 = 8, R0 = 0.8 and R1 = 0.85.

Based on numerical computations carried out to investigate the effect of variations

in input parameters on MTETC, from above graphs, it is clear that the proposed

model is sensitive for small variations in input parameters. However, it is observed

from this sensitivity analysis study that MTETC is stable for changes in c1, c2 and

c3 (see Figures, 3.11, 3.12 and 3.13).

Note that the maximum-total-expected-testing-cost (MTETC) reported in Section

3.3.2 depends upon various input parameters, namely, α, β, R0, R1, ci. As a part of

qualitative analysis of study, characterize MTETC in terms of these input parameters.

Consider the producer’s risk α, the changes in values of α make some variation in

maximum-total-expected-testing-costs. If α is very small (that is, near zero), we

observe that MTETC is increasing. If α is increasing, MTETC slowly becomes stable.

Note that the values of MTETC is decreasing when α increasing (see Figure 3.7).

Consider the consumer’s risk β, the changes of β makes some fluctuations in MTETC,

but it is almost stable. Only small changes in MTETC are made by β (see Figure

3.8).

Now consider the acceptable reliability level R1 and unacceptable reliability level

R0. When R1 changes, corresponding graph of MTETC is almost like a bathtub curve.

For initial values of R1, MTETC is high, then stable and then again increasing (see

Figure 3.10). When R0 changes, corresponding MTETC decreases in the interval

(0.806, 0.810), and then steadily increases (see Figure 3.9).

Similarly, a small change in c1, c2 and c3 are making small changes in MTETC (see
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Figures 3.11, 3.12 and 3.13 respectively). Then MTETC remains almost stable for

small variations in c1, c2 and c3.

The variation in MTETC while changes in the values of two parameters are shown

in Figures 3.14, 3.15, 3.16, 3.17 and 3.18. It can also be noted that the stability

of MTETC is almost maintained when two of the parameters among c1, c2, c3 are

subjected to vary (see Figures 3.16, 3.17 and 3.18.). The same is true, when (α, β)

are subjected to vary (see Figure 3.14).

3.4 Conclusions

In the reliability test plan proposed in the papers [82] and [73], one has to test all

component equally irrespective of the testing cost. Through this work, it is shown

that for a series system, the optimum design depends on the cost of the individual

components and that all components need not be tested equally. Unlike most of the

plans available in the literature, in the proposed plan, the acceptance constant d∗

and the optimum sample size for each component depending upon the testing costs

of individual components. Also, it is observed that no test plan in the literature uses

prior information in the form of upper bound that is a function of covariates. However,

through the proposed plan, it is observed that the use of priori information and

incorporation of covariates have the advantage of savings in testing cost as illustrated

through Examples. Incorporation of covariate information in modeling failure rates

of components as a linear combination of covariates and, considering the testing cost

as a function of time have a significant advantage in reducing the total number of

components to be tested for failure. It is observed that the percentage of components

to be tested for failure is reduced by about 96 %. Moreover, this type of testing the

reliability of a system by obtaining data under Type-II censoring, has an advantage of

obtaining realistic results, since the system is tested under normal working conditions,

where the influence of risk factors are not ignored.
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3.5 Appendix

3.5.1 Proof of Lemma 3.3.1

(a): Given f(β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk) =
−ln(d)−

n∑
i=1

k∑
j=1

βijxj

 n∑
i=1


 k∑
j=1

βijxj

2

ri




1
2

and −ln(d) ≥

n∑
i=1

k∑
j=1

βijxj. Then, ∂f
∂βpq

= (−xq)(Y1)
1
2−(xq)(Y2)(Y3)(Y1)−

1
2

n∑
i=1

(Y4)
, for all p = 1, 2, ..., n; q =

1, 2, ..., k, where, Y1 =
n∑
i=1


(

k∑
j=1

βijxj

)2

ri

 , Y2 = −ln(d)−
n∑
i=1

k∑
j=1

βijxj, Y3 =

k∑
j=1

βpjxj

rp
, Y4 =

(
k∑
j=1

βijxj

)2

ri
.

Clearly, this is a negative quantity. Hence ∂f
∂βij

< 0 ∀ βij, for i = 1, 2, ..., n and

j = 1, 2, ..., k.

(b): Given f(β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk) =
−ln(d)−

n∑
i=1

k∑
j=1

βijxj

 n∑
i=1


 k∑
j=1

βijxj

2

ri




1
2

and −ln(d) <
n∑
i=1

k∑
j=1

βijxj. So that,

∂f

∂βpq
=

(−xq) (Y1)
1
2 − (xq) (Y2) (Y3) (Y1)−

1
2

n∑
i=1

(Y4)
,

for all p = 1, 2, ..., n; q = 1, 2, ..., k.
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If − ln(d) <
n∑
i=1

k∑
j=1

βijxj ⇒
n∑
i=1

k∑
j=1

βijxj + ln(d) > 0, then,

∂f

∂βpq
=

(−xq)
(

n∑
i=1

(Y4)

) 1
2

+ (xq)

(
n∑
i=1

k∑
j=1

βijxj + ln(d)

)
(Y3) (Y1)−

1
2

n∑
i=1

(Y4)
.

Also, given that

n∑
i=1

k∑
j=1

βijxj + ln(d) <

 rp
k∑
j=1

βpjxj




n∑
i=1


(

k∑
j=1

βijxj

)2

ri



 ,

then ∂f
∂βpq

is strictly less than the quantity

(−xq) (Y1)
1
2 + (xq)

 rp
k∑
j=1

βpjxj

 (Y1) (Y3) (Y1)−
1
2

n∑
i=1

(Y4)
.

This implies

∂f

∂βpq
<

(−xq)

 n∑
i=1


(

k∑
j=1

βijxj

)2

ri




1
2

+ (xq)

 n∑
i=1


(

k∑
j=1

βijxj

)2

ri




1
2

n∑
i=1


(

k∑
j=1

βijxj

)2

ri


.

Clearly ∂f
∂βpq

< 0 ∀ βpq, p = 1, 2, ..., n, q = 1, 2, ..., k. Hence, f is strictly decreasing

function of βij ∀ i = 1, 2, ..., n, j = 1, 2, ..., k.
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3.5.2 Proof of Lemma 3.3.2

f(β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk) =
n∑
i=1

(
k∑
j=1

βijxj

)2

ri
, then the Hessian matrix ob-

tained for f , is given by

H =


H1 O · · · O

O H2 · · · O

· · · · · · · · · · · ·
O · · · O Hn

 ,

where for 1 ≤ i ≤ n,

Hi =



2x21
ri

2x1x2
ri

· · · 2x1xk
ri

2x1x2
ri

2x22
ri

· · · 2x2xk
ri

· · · · · · · · · · · ·

2x1xk
ri

2x2xk
ri

· · · 2x2k
ri


and O =



0 0 · · · 0

0 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0


.

Let E be the equivalent matrix of H obtained by row transformations R2 ←−(
x1
x2

)
R2 − R1, R3 ←−

(
x1
x3

)
R3 − R1, · · · , Rk ←−

(
x1
xk

)
Rk − R1, on the matrices

H1,H2, ...,Hn respectively. Then E is given by

E =


E1 O · · · O

O E2 · · · O

· · · · · · · · · · · ·
O · · · O En

 , Ei =



2x21
ri

2x1x2
ri

· · · 2x1xk
ri

0 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0


, i = 1, 2, ..., n.
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Now we give the following two facts from linear algebra.

Fact 1: If A is an n×n matrix with eigenvalues η1, η2, ..., ηn, then trace(A) =
n∑
i=1

ηi.

Fact 2: Suppose that A is an n× n symmetric matrix, then the rank of A is equal

to the number of non zero eigenvalues of A.

Since Hi’s and Ei’s are equivalent matrices, we have rank(Hi) = rank(Ei) ∀ i =

1, 2, ..., n. Clearly, rank(Ei) = 1 ∀ i = 1, 2, ..., n, and hence rank(Hi) = 1 ∀ i =

1, 2, ..., n. Note that, by our assumption, xi > 0, i = 1, 2, ..., n, and hence, elements

of Hi are all positive, i = 1, 2, ..., n. Then from Fact 1 and Fact 2, and for 1 ≤ i ≤ n,

the matrix Hi has only one non-zero eigenvalue which is positive. Thus the Hessian

matrix H corresponding to the given function is positive semi definite. Hence f is

convex function.

3.5.3 Lemma 3.5.3

Let f : Rnk −→ R be a function defined by

f(η) =

−ln d−
n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

(
k∑

j=1

βijxj

)2

ri−2

where
k∑
j=1

βijxj > 0, −ln d > 0 for all d ∈ (0, 1), xj’s are positive constants,

ri’s are integers greater than 2 for all i, βij’s are real numbers for i = 1, 2, ..., n

and j = 1, 2, ..., k and η = (β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk). Then the following

statements are true.

a) If −ln d >
n∑
i=1

k∑
j=1

βijxj,

then f is strictly decreasing function of βij for all i = 1, 2, ..., n, j = 1, 2, ..., k.
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b) If −ln d <
n∑
i=1

k∑
j=1

βijxj and

n∑
i=1

k∑
j=1

βijxj + ln d <

 ri − 2
k∑
j=1

βijxj




n∑
i=1

(
k∑
j=1

βijxj

)2

ri − 2


for all i = 1, 2, ..., n, then f is strictly decreasing function of βij.

Proof (a):

It is given that

f(η) =

−ln d−
n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

and − ln d >
n∑
i=1

k∑
j=1

βijxj

Let Y1 =
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2
, Y2 = −ln d−

n∑
i=1

k∑
j=1

βijxj and Y3 =

k∑
j=1

βijxj

ri − 2
then

∂f

∂βij
=
−xj
√
Y1 − xjY2Y3 (Y1)−

1
2

Y1

Since Y1 > 0, Y2 > 0 (given) and Y3 > 0 for all i = 1, 2, ..., n; j = 1, 2, ..., k,
∂f

∂βij
< 0

for all βij, i = 1, 2, ..., n and j = 1, 2, ..., k.

Proof (b):

It is given that

f(η) =

−ln d−
n∑
i=1

k∑
j=1

βijxj√√√√ n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

and − ln d <
n∑
i=1

k∑
j=1

βijxj
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Let Y1 =
n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2
, Y2 = −ln d−

n∑
i=1

k∑
j=1

βijxj and Y3 =

k∑
j=1

βijxj

ri − 2
, then

∂f

∂βij
=
−xj
√
Y1 − xjY2Y3 (Y1)−

1
2

Y1

If −ln d <
n∑
i=1

k∑
j=1

βijxj, then
n∑
i=1

k∑
j=1

βijxj + ln d > 0.

That is, −Y2 > 0, then

∂f

∂βij
=
−xj
√
Y1 + xj (−Y2)Y3 (Y1)−

1
2

Y1

Also given that
n∑
i=1

k∑
j=1

βijxj + ln d <

 rp−2
k∑
j=1

βpjxj


 n∑
i=1

(
k∑
j=1

βijxj

)2

ri−2

.

That is −Y2 <

(
1

Y3

)
Y1, then we have

∂f

∂βij
<

−xj
√
Y1 + xj

(
1

Y3

)
Y1Y3 (Y1)−

1
2

Y1

This implies

∂f

∂βij
<
−xj
√
Y1 + xj (Y1)

1
2

Y1

= 0

That is
∂f

∂βij
< 0 for all βij.

Hence f is strictly decreasing function of βij for all i = 1, 2, ..., n; j = 1, 2, ..., k.
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3.5.4 Lemma 3.5.4

Let f : Rnk −→ R be a function defined by

f(η) =
n∑
i=1

(
k∑
j=1

βijxj

)2

ri − 2
,

where i varies from 1 to n, j varies from 1 to k, xj’s are positive constants, ri’s are

integers greater than 2, βij’s are real numbers,
k∑
j=1

βijxj > 0 for all i = 1, 2, ..., n and

η = (β11, β12, ..., β1k, ..., βn1, βn2, ..., βnk). Then f is a convex function.

Proof

Here

f(η) =
n∑
i=1

(
k∑
j=1

βijxj

)2

ri − 2
,

then the Hessian matrix is given by

H =


H1 O · · · O

O H2 · · · O

· · · · · · · · · · · ·
O · · · O Hn


where

Hi =



2x2
1

ri − 2

2x1x2

ri − 2
· · · 2x1xk

ri − 2

2x1x2

ri − 2

2x2
2

ri − 2
· · · 2x2xk

ri − 2

· · · · · · · · · · · ·

2x1xk
ri − 2

2x2xk
ri − 2

· · · 2x2
k

ri − 2


and O =



0 0 · · · 0

0 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0


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where i varies from 1 to n. Let Ei be the equivalent matrix of Hi obtained by the

row transformations R2 ←−
(
x1

x2

)
R2 − R1, R3 ←−

(
x1

x3

)
R3 − R1, · · · , Rk ←−(

x1

xk

)
Rk −R1 on the matrices Hi, i = 1, 2, ..., n, then the equivalent matrix E of H

is of the form

E =


E1 O · · · O

O E2 · · · O

· · · · · · · · · · · ·
O · · · O En

 where Ei =



2x2
1

ri − 2

2x1x2

ri − 2
· · · 2x1xk

ri − 2

0 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0


where i varies from 1 to n. Now we give the following two facts from linear algebra.

Fact 1: If A is an n×n matrix with eigenvalues λ1, λ2, ..., λn, then trace(A) =
n∑
i=1

λi.

Fact 2: Suppose that A is an n × n symmetric matrix, then the rank of A is equal

to the number of non zero eigenvalues of A.

Since Hi’s and Ei’s are equivalent matrices, we have rank(Hi) = rank(Ei) ∀ i =

1, 2, ..., n. Clearly rank(Ei) = 1 ∀ i = 1, 2, ..., n, and hence rank(Hi) = 1 ∀ i =

1, 2, ..., n. Then from Fact 2, the number of non zero eigenvalues of Hi’s is equal

to one. By our assumption that xi > 0 ∀ i, the elements of Hi’s are all positive.

Now from Fact 1 it is clear that the only one non zero eigenvalue of Hi is positive

∀ i = 1, 2, ..., n. Thus the Hessian matrix H corresponding to the given function is

positive semi definite. Hence the given function is convex.



Chapter 4

Bayesian Reliability Test Plans for
a Multi-component System

4.1 Introduction

When a manufacturer produces a new product, he should test the reliability of the

product for a particular duration of time to make sure that the product will perform

to the best as expected by the consumer. Fixing the testing time based on prior

information is one of the difficult tasks. The incorporation of prior information about

the failure rate in the form of upper bounds takes a significant role in determining the

duration of testing time in the design of reliability test plans. Some of the references

related to optimal reliability test plans for exponentially distributed lifetimes of com-

ponents, with constant but unknown failure rates, are [9, 11, 14, 29, 36, 59, 83]. The

optimal test times or an optimal number of components to be tested, reported under

various situations in these papers are supposed to be used under normal working

conditions regardless of the environment in which component testing is to be carried
∗Some results of this chapter are published in the following paper and book chapter.

P. N. Bajeel and M. Kumar.:Design of Optimal Bayesian Reliability Test Plans for a Series System.
International Journal of Pure and Applied Mathematics. Academic Publishers. Vol. 109 (5), pp. 125–133
(2016) - - (Scopus indexed).

M. Kumar and P.N. Bajeel.: Introduction to System Reliability Evaluation through Bayesian Approach.
Book Chapter - Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics.
IGI Global - USA. pp. 130–153, (2017)- - (Scopus indexed).
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out. In the paper [13], the reliability test plan for a series system is constructed by

assuming a constant failure rate that depends upon the mission performed. In the

paper [100], the authors have considered a parallel system of n independent compo-

nents with constant failure rates, and the component testing procedure guarantees

that the given consumer and producer risks are not exceeded. They assume certain

restrictions on the magnitude of the unknown failure rates for guaranteeing the re-

quirements of producer risk. The component test procedures use data from Type-I

censoring and employ decision rules based on the total number of component failures

during the testing periods, the number of failures obtained for each component, and

the maximum likelihood estimate of the system reliability.

In this chapter, a Bayesian reliability test plan for a parallel and series systems

consisting of n different components with the assumption that components have life-

times that are exponentially distributed with non-constant failure rates λi, 1 ≤ i ≤ n,

is considered. That is, λi’s are assumed to be random variables having distributed as

per Quasi density law function given by g(λi) = 1
λki
, k ≥ 1. Note that this is a nonin-

formative prior used for modeling prior information for failure rates of components.

Moreover, based on readily available abundant data in the industry, an upper bound

for failures are also considered. This will help in solving the resulting optimization

problem involved in obtaining optimal reliability test plans. In Section 4.2, optimal

Bayesian reliability test plan is developed for a parallel system using noninformative

Quasi-prior. This section is organized as follows: In Section 4.2.1, a likelihood func-

tion of Exponential distribution under Type-I censoring is obtained, and the posterior

distribution of the failure rate is obtained in Section 4.2.2. The reliability estimate of

the system for a unit time is obtained in Section 4.2.3. In Section 4.2.4, an acceptance

rule based on the reliability estimate is defined. The acceptable and unacceptable re-

liability levels are obtained in Section 4.2.5. The Delta method for approximating the

distribution of test statistic is given in Section 4.2.6. The optimal reliability test plan

is constructed in Section 4.2.7, and corresponding numerical results are discussed in

Section 4.2.8. In Section 4.3, optimal Bayesian reliability test plan for a series system

with noninformative Quasi-prior is discussed. This Section is organized as follows: In
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Section 4.3.1, likelihood function of Exponential distribution under Type-I censoring

and the posterior distribution of failure rate are obtained. The reliability estimate

of the system for unit time and acceptance rule based on this reliability estimate are

given in Sections 4.3.2 and 4.3.3 respectively. Mean and variance of the test statistic

are obtained in Section 4.3.4, and optimal test plan is developed in Section 4.3.5. The

numerical results are illustrated in Section 4.3.6. Finally, conclusions are drawn in

Section 4.4.

4.2 Optimal Bayesian Reliability Test Plans for a Parallel
System

In this section, the problem of testing the reliability of a highly reliable parallel system

with n independent components under Type-I censoring is considered. It is assumed

that the lifetime of i− th component follows Exponential distribution with parameter

λi, λi ≤ ui ∀ i = 1, 2, · · · , n, where ui is a known upper bound for the failure rate λi.

Then the parallel system reliability for unit time period is given by

R = 1−
n∏
i=1

(1− e−λi).

Since the system is highly reliable, the system reliability can be approximated as

R = 1−
n∏
i=1

(1− e−λi) ' 1−
n∏
i=1

λi.

In Bayesian paradigm, each λi is treated as a random variable. Now, assume that the

density of λi follows Quasi density given by g(λi) = 1
λki
, k ≥ 1. Since the Quasi-prior

with k > 1 gives rise to intractable optimization problem which is difficult to solve in

general set up. Therefore, consider the case g(λi) = 1
λi

, a simple prior with k = 1 as

the noninformative Quasi-prior for λi. Let Li, 1 ≤ i ≤ n be the total testing time for

the i− th component. Let ci denote the cost of testing the i− th component per unit

time. Then the aim is to find the time periods Li, 1 ≤ i ≤ n that minimize the total

testing cost subjected to Type-I and Type-II error constraints. That is, the problem

is to determine the optimum values of Li, 1 ≤ i ≤ n by formulating the following
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optimization problem:

min
Li

C =
n∑
i=1

ciLi

such that

P (Reject the system | System is good) < α, (4.2.1)

P (Accept the system | System is bad) ≤ β, (4.2.2)

where 0 < β < 1 − α < 1. Here, α is usually known as producer’s risk, and β is

known as consumer’s risk.

4.2.1 Likelihood function based on Type-I censoring

Let Tij denote the lifetime of j−th component of type i. Since Tij follows Exponential

distribution with failure rate λi, then the probability density function of Tij is given

by f(tij) = λie
−λitij . Thus, the likelihood function based on Type-I censoring is given

by

L(tij | λi) = L =
∏
j∈N

(
λie
−λitij

)δj (
e−λitij

)1−δj
= λXii e

−λiLi ,

where δi = 1 if tij ≤ Li, δi = 0 if tij > Li, Xi =
∑
j∈N

δj and Li =
∑
j∈N

tij. (See, [55]).

4.2.2 Posterior Distribution

Let f(tij, λi), g(λi | tij) and f(tij | λi) be the joint density of tij and λi, the conditional

density of λi, given tij, and the conditional density of tij, given λi, respectively. Under

the assumption that the marginal densities m(tij) and g(λi) of tij and λi, respectively,

satisfy the conditions required for the existence of conditional densities, the expression

for g(λi | tij) and f(tij | λi) can be written as

g(λi | tij) =
f(tij, λi)

m(tij)
and f(tij | λi) =

f(tij, λi)

g(λi)
.

Thus, the posterior distribution of λi is given by

g(λi | tij) =
g(λi)f(tij | λi)

m(tij)
=

g(λi)f(tij | λi)∫∞
λi=0

g(λi)f(tij | λi)dλi
.
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=
λXii e

−λiLi 1

λi∫∞
λi=0

g(λi)f(tij | λi)dλi
=

LXii
Γ (Xi)

λXi−1
i e−λiLi . (4.2.3)

(See, [16] for more details).

4.2.3 Reliability Estimate of the System

Note that, E

((
λi − λ̂i

)2
)

=
∫ (

λi − λ̂i
)2

f(λi)dλi. Differentiating with respect to

λ̂i and equating to zero implies, λ̂i = E(λi). Since posterior distribution of λi follow

Gamma distribution given by 4.2.3, it clear that λ̂i = E(λi) =
Xi

Li
. (See, [53] for more

details). Then an estimate of the system reliability for unit time period is obtained

using the Bayesian estimator of failure rates, and which is given by

R̂ = 1−
n∏
i=1

λ̂i = 1−
n∏
i=1

Xi

Li
.

Note here that, the loss function used is squared error loss function to obtain Baye’s

estimate of λi.

4.2.4 Acceptance Rule Based on Reliability Estimate

In this section, an acceptance rule for accepting the system is defined. The proposed

rule is to accept the system if the estimate of the system reliability based on Bayesian

estimator of λi given by R̂ = 1 −
∏n

i=1

Xi

Li
is greater than or equal to some number

d, where d ∈ (0, 1). Then, note that

R̂ ≥ d⇔ 1−
n∏
i=1

Xi

Li
≥ d⇔

n∑
i=1

ln

(
Xi

Li

)
≤ ln(1− d).

Let ϕ = ln(1− d), then the acceptance rule can be written as

V =
n∑
i=1

ln

(
Xi

Li

)
≤ ϕ.

4.2.5 Acceptable and Unacceptable Reliability Levels

A system is said to be satisfactory for unit time if R, the survival probability, is

greater than or equal to R1, the acceptable reliability level (ARL) and, it is said to be
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unsatisfactory if R is less than or equal to R0, the unacceptable reliability level (URL),

where R0 and R1 are constants such that 0 < R0 < R1 < 1. Let ϕ1 = ln(1−R1) and

ϕ2 = ln(1−R0), then the following relations are true:

R ≥ R1 ⇔
n∏
i=1

λi ≤ 1−R1 ⇔
n∑
i=1

lnλi ≤ ϕ1,

R ≤ R0 ⇔
n∏
i=1

λi ≥ 1−R0 ⇔
n∑
i=1

lnλi ≥ ϕ2.

4.2.6 Normal approximation of distribution of V using Delta method

Since the lifetime of the components is exponentially distributed, the number of fail-

ures follows Poisson distribution with mean and variance λiLi. Define

g(Xi) = ln

(
Xi

Li

)
,

then g′(Xi) = 1
Xi

. Then by Delta method g(Xi) follows Normal distribution with

mean g(µ) = ln(λi) and variance

(g′(µ))
2
σ2(Xi) =

1

λiLi
.

That is,

g(Xi) ∼ N

(
lnλi,

1

λiLi

)
.

Since V =
n∑
i=1

g(Xi) =
n∑
i=1

ln

(
Xi

Li

)
, by Lindeberg central limit theorem V =

n∑
i=1

g(Xi)

follows Normal distribution with mean
n∑
i=1

ln(λi) and variance
n∑
i=1

1
λiLi

. (For more

details see, [74]).

4.2.7 Optimal design of the problem

Let the cost of testing the i − th component per unit time be denoted by ci. Then

based on Type-I censoring scheme, the total cost of testing is C =
n∑
i=1

ciLi. Then the

problem is to minimize C subjected to producers risk and consumers risk. That is,
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the aim is to find the optimum values of Li from the optimization problem,

min
Li

C =
n∑
i=1

ciLi

such that

P (Accept the system | System is good) ≥ 1− α, (4.2.4)

P (Accept the system | System is bad) ≤ β. (4.2.5)

Using the acceptance rule defined in Section 4.2.4, the constraints 4.2.4 and 4.2.5 can

be written as

P

(
n∑
i=1

ln

(
Xi

Li

)
≤ ϕ |

n∑
i=1

lnλi ≤ ϕ1, λi ≤ ui ∀ i

)
≥ 1− α, (4.2.6)

P

(
n∑
i=1

ln

(
Xi

Li

)
≤ ϕ |

n∑
i=1

lnλi ≥ ϕ2, λi ≤ ui ∀ i

)
≤ β. (4.2.7)

Observe that in terms of probability of acceptance, constraint 4.2.6 states that the

probability of acceptance should be at least 1−α for all combinations of λi values that

satisfy the conditions
n∑
i=1

lnλi ≤ ϕ1, λi ≤ ui ∀ i = 1, 2, · · · , n. That is, the minimum

probability of acceptance over all such λi should exceed 1 − α. The constraint 4.2.7

states that the probability of acceptance should be at most β for all combinations

of λi values that satisfy the conditions
n∑
i=1

lnλi ≥ ϕ2, λi ≤ ui ∀ i = 1, 2, · · · , n.

That is, the maximum probability of acceptance over all such λi should not exceed

β. Therefore constraints 4.2.6 and 4.2.7 can be rewritten as

min
λi

P

(
n∑
i=1

ln

(
Xi

Li

)
≤ ϕ |

n∑
i=1

lnλi ≤ ϕ1, λi ≤ ui ∀ i

)
≥ 1− α, (4.2.8)

max
λi

P

(
n∑
i=1

ln

(
Xi

Li

)
≤ ϕ |

n∑
i=1

lnλi ≥ ϕ2, λi ≤ ui ∀ i

)
≤ β. (4.2.9)
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The exact distribution of
n∑
i=1

ln

(
Xi

Li

)
is not easy to obtain, and in order to obtain

the tractable problem, approximate the distribution of
n∑
i=1

ln

(
Xi

Li

)
with Normal dis-

tribution. Recall that
n∑
i=1

ln

(
Xi

Li

)
asymptotically normally distributed with mean

n∑
i=1

ln(λi) and variance
n∑
i=1

1
λiLi

. Then constraints 4.2.8 and 4.2.9 can be written as

min
λi

P

Z ≤ ϕ−
n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

|
n∑
i=1

lnλi ≤ ϕ1, λi ≤ ui ∀ i

 ≥ 1− α, (4.2.10)

max
λi

P

Z ≤ ϕ−
n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

|
n∑
i=1

lnλi ≥ ϕ2, λi ≤ ui ∀ i

 ≤ β, (4.2.11)

where, Z =

n∑
i=1

ln
(
Xi
Li

)
−

n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

. Since the cumulative distribution function of standard

normal random variable is strictly increasing function in its arguments, the constraints

4.2.10 and 4.2.11 can be written as

min
λi

ϕ−
n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

|
n∑
i=1

lnλi ≤ ϕ1, λi ≤ ui ∀ i

 ≥ Z1− α, (4.2.12)

max
λi

ϕ−
n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

|
n∑
i=1

lnλi ≥ ϕ2, λi ≤ ui ∀ i

 ≤ Zβ. (4.2.13)

Note that Z1−α and Zβ are strictly positive and negative respectively for all values of

α, β < 0.5. Hence ϕ ∈ (ln(1−R1), ln(1−R0)). Now, consider the left hand side of

the constraint 4.2.12.

Problem B1:
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min
λi

ϕ−
n∑
i=1

ln(λi)√
n∑
i=1

1
λiLi

such that

n∑
i=1

lnλi ≤ ϕ1,

λi ≤ ui ∀ i = 1, 2, · · · , n.

Clearly, the optimum will attain when
n∑
i=1

lnλi = ϕ1, then the optimization Prob-

lem B1 can be rewritten as

Problem B2:

min
λi

ϕ−ϕ1√
n∑
i=1

1
λiLi

such that

n∑
i=1

lnλi = ϕ1,

λi ≤ ui ∀ i = 1, 2, · · · , n.

Since the numerator is a positive and independent of λi, to minimize the objective

function of Problem B2, it is enough to maximize the denominator of the objective

function of Problem B2. That is,

Problem B3:

max
λi

n∑
i=1

1
λiLi

such that
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n∑
i=1

lnλi = ϕ1,

λi ≤ ui ∀ i = 1, 2, · · · , n.

This optimization Problem B3 can be rewritten as

Problem B4:

max
λi

n∑
i=1

1
elnλiLi

such that

n∑
i=1

lnλi = ϕ1,

lnλi ≤ lnui ∀ i = 1, 2, · · · , n.

This is a convex programing problem in lnλi, and can be easily solved as follows.

Define ϑi =


lnui, if i 6= j

ϕ1 −
∑
i 6=j

lnui, if i = j
for j = 1, 2, · · · , n.

Then it is clear that by assuming feasibility, the optimum solution to above maxi-

mization Problem B4 will be at any one of these ϑi’s, let it be ϑ∗i . Then the constraint

4.2.12 can be written as
ϕ− ϕ1√
n∑
i=1

1

eϑ
∗
i Li

≥ Z1−α.

That is,
n∑
i=1

1

eϑ
∗
iLi
≤
(
ϕ− ϕ1

Z1−α

)2

. (4.2.14)
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Similarly, proceeding as in the case of constraint 4.2.12, and defining

µi =


lnui, if i 6= j

ϕ2 −
∑
i 6=j

lnui, if i = j
for j = 1, 2, · · · , n,

the constraint 4.2.13 can be rewritten as

n∑
i=1

1

eµ
∗
iLi
≤
(
ϕ− ϕ2

Zβ

)2

. (4.2.15)

Now, for ϕ ∈ (ln(1−R1), ln(1−R0)), the final optimal design can be written as

follows

min
Li

C =
n∑
i=1

ciLi

such that
n∑
i=1

1

eϑ
∗
iLi
≤
(
ϕ− ϕ1

Z1−α

)2

, (4.2.16)

n∑
i=1

1

eµ
∗
iLi
≤
(
ϕ− ϕ2

Zβ

)2

. (4.2.17)

The above problem can be solved easily with the help of softwares like Lingo or

MATLAB.

4.2.8 Numerical results and comparison

The optimal design developed in previous section is illustrated below with the help

of numerical computation. Let the number of components in a parallel system be 3

and the cost vector c = (1, 1.5, 0.75). Then the following Table 4.1 gives the optimal

test times and total testing cost for different inputs.

Table 4.1: Numerical example for a three component parallel system

α β R0 R1 u1 u2 u3 L1 L2 L3 C −ϕ
1 0.1 0.1 0.95 0.9999 0.2 0.12 0.15 57.95134 10.82155 25.27973 93.14347 4.477015
2 0.1 0.1 0.99 0.9999 0.2 0.12 0.15 113.1306 26.7236 46.11182 187.7999 5.881556
3 0.1 0.1 0.95 0.999 0.12 0.9 0.15 25.68597 25.63079 35.5445 90.79052 4.344261
4 0.1 0.1 0.95 0.999 0.1 0.2 0.3 23.99899 20.91438 40.4968 85.74315 4.413437
5 0.001 0.001 0.95 0.999 0.1 0.2 0.3 42.34731 36.90438 71.45846 151.2977 4.413437
6 0.001 0.001 0.95 0.9999 0.1 0.2 0.3 26.39473 25.91707 120.2076 155.426 4.589874
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Now, consider a two component parallel system with cost vector denoted by c =

(c1, c2), and upper bound vector of failure rate denoted by u = (u1, u2). Correspond-

ing to the inputs c = (1, 1.5), u = (0.2, 0.15), R0 = 0.97, R1 = 0.999, α = 0.1 and

β = 0.1, the optimum test times are L1 = 155.5193 and L2 = 48.40575. The total

testing cost C and optimum value of ϕ respectively are 228.1279 units and −4.465383.

In the plan proposed in [83], the authors have obtained the component reliability

test plan for a highly reliable parallel system under Type-I censoring with optimum

test times 77.12, 102.82 and corresponding testing cost 1105.32 units for the data

n = 2 , c = (1, 10), u = (0.2, 0.15), R0 = 0.98, R1 = 0.999, α = 0.05 and β = 0.05.

For the same data the proposed Bayesian plan gives the optimum test times L1 =

159.3588 units and L2 = 16.8623 units. The total testing cost C is 327.9818 units and

optimum value of ϕ = −4.94004. On Comparison of these two results, the proposed

method has about 70% savings in total testing costs.

The results are generated by running Visual C++ and LINGO11 in tandem. The

programming is done in Visual C++, within which LINGO11 is called whenever an

optimization required.

4.3 Optimal Bayesian Reliability Test Plans for a Series Sys-
tem

In this section, the problem of testing the reliability of a series system with n indepen-

dent components under Type-I censoring is considered, where the i − th component

has exponential lifetime with unknown parameter λi, λi ≤ ui ∀ i = 1, 2, ..., n, and

ui is the predefined upper bound of the failure rate λi. Then the series system re-

liability for unit time period is given by R =
n∏
i=1

e−λi . Consider the Quasi-prior

g(λi) =
1

λki
, k ≥ 0, a simple prior as the non-informative Quasi-prior for λi. Test the

i − th component in (0, Li]. As soon as the component fails, it will be replaced by

an identical component, so that the testing continue till the fixed time Li, 1 ≤ i ≤ n.
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4.3.1 Posterior Distribution Based on Type-I Censoring

Let Tij, the lifetime of j − th component of type i. Since Tij follows Exponential

distribution with failure rate λi, the probability density function of Tij is given by

f(tij) = λie
−λitij . Then the likelihood function based on Type-I censoring is given by

L(tij | λi) = L =
∏
j∈N

(
λie
−λitij

)δj (
e−λitij

)1−δj
= λXii e

−λiLi ,

where δi = 1 if tij ≤ Li, δi = 0 if tij > Li, Xi =
∑
j∈N

δj and Li =
∑
j∈N

tij.

Let f(tij, λi), g(λi | tij) and f(tij | λi) be the joint density of tij and λi, the

conditional density of λi, given tij, and the conditional density of tij, given λi, re-

spectively. Under the assumption that the marginal densities m(tij) and g(λi) of tij

and λi, respectively, satisfy the conditions required for the existence of conditional

densities. We have g(λi | tij) =
f(tij, λi)

m(tij)
and f(tij | λi) =

f(tij, λi)

g(λi)
. Thus, the

posterior distribution of λi is given by

g(λi | tij) =
g(λi)f(tij | λi)

m(tij)
=

g(λi)f(tij | λi)∫∞
λi=0

g(λi)f(tij | λi)dλi

=

λXii e
−λiLi 1

λki∫∞
λi=0

g(λi)f(tij | λi)dλi
=

LXi−k+1
i

Γ (Xi − k + 1)
λXi−ki e−λiLi .

4.3.2 Reliability Estimate of the System

Note that, E

((
λi − λ̂i

)2
)

=
∫ (

λi − λ̂i
)2

f(λi)dλi. On differentiating with respect

to λ̂i, and equating to zero implies, λ̂i = E(λi). That is, λ̂i = E(λi) =
Xi − k + 1

Li
,

since posterior density of λi has Gamma distribution. Note that the loss function

used here is squared error loss function to obtain Baye’s estimate of λi.

An estimate of the system reliability is obtained by using the Bayesian estimator

of failure rates. Thus R̂ =
n∏
i=1

e−λ̂i =
∏n

i=1 e
−
(
Xi−k+1

Li

)
.
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4.3.3 Acceptance Rule Based on Reliability Estimate R̂

In this section, an acceptance rule required for optimal plan is defined. The proposed

rule is to accept the system if the estimate of the system reliability based on Bayesian

estimator of λi given by R̂ =
∏n

i=1 e
−
(
Xi−k+1

Li

)
is greater than or equal to some number

d, where d ∈ (0, 1). Then, note that

R̂ ≥ d⇔
n∏
i=1

e
−
(
Xi−k+1

Li

)
≥ d⇔

n∑
i=1

(
Xi − k + 1

Li

)
≤ −ln d.

A system is said to be satisfactory for unit time if R, the survival probability, is

greater than or equal to R1, the acceptable reliability level (ARL) and, it is said to

be unsatisfactory if R is less than or equal to R0, the unacceptable reliability level

(URL), where R0 and R1 are constants such that 0 < R0 < R1 < 1. Then the

following relations are true.

R ≥ R1 ⇔
n∏
i=1

e−λi ≥ R1 ⇔
n∑
i=1

λ1 ≤ −ln R1,

R ≤ R0 ⇔
n∏
i=1

e−λi ≤ R0 ⇔
n∑
i=1

λ1 ≥ −ln R0.

4.3.4 Mean and variance of the test statistic

Consider the test statistic obtained in previous section. That is,
Xi − k + 1

Li
. Let

us find the mean and variance of
Xi − k + 1

Li
. Since the lifetime of components is

exponentially distributed, the number of failures of i − th component under Type-I

censoring follows Poisson distribution with mean and variance λiLi. Then,

E

(
Xi − k + 1

Li

)
=
λiLi− k + 1

Li
⇒ E

(
n∑
i=1

Xi − k + 1

Li

)
=

n∑
i=1

λiLi− k + 1

Li
,

V ar

(
Xi − k + 1

Li

)
=
λi
Li
⇒ V ar

(
n∑
i=1

Xi − k + 1

Li

)
=

n∑
i=1

λi
Li
.
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4.3.5 Optimal Design of the Problem

Let ci denote the cost of testing the i− th component per unit time. Then the aim is

to find the time periods Li, 1 ≤ i ≤ n that minimize the total testing cost subjected

to Type-I and Type-II error constraints. That is, the problem is to determine the

optimum values of Li by formulating the following optimization problem:

Minimize C =
n∑
i=1

ciLi

such that

P (Accept the system | System is good) ≥ 1− α, (4.3.1)

P (Accept the system | System is bad) ≤ β, (4.3.2)

where 0 < β, 1 − α < 1. Here, the first constraint is usually referred to as pro-

ducer’s risk constraint, while the second is the consumer’s risk constraint. Using the

acceptance rule defined in Section 4.3.3, the constraints 4.3.1 and 4.3.2 can be written

as

min
λi

P

(
n∑
i=1

Xi − k + 1

Li
≤ −ln d |

n∑
i=1

λi ≤ − ln R1

)
≥ 1− α, (4.3.3)

max
λi

P

(
n∑
i=1

Xi − k + 1

Li
≤ −ln d |

n∑
i=1

λi ≥ − ln R0

)
≤ β. (4.3.4)

The exact distribution of
n∑
i=1

Xi − k + 1

Li
is not easy to obtain, and in order to obtain

the tractable optimization problem, it is necessary to approximate the distribution

of
n∑
i=1

Xi − k + 1

Li
. Recall that

n∑
i=1

Xi − k + 1

Li
has mean

n∑
i=1

λiLi − k + 1

Li
and variance

n∑
i=1

λi
Li

(see, Section 4.3.4). Now,

Z =

n∑
i=1

Xi − k + 1

Li
−

n∑
i=1

λiLi − k + 1

Li√
n∑
i=1

λi
Li

.



CHAPTER 4. BAYESIAN RELIABILITY TEST PLANS 116

Thus by using the property of cumulative distribution function of Normal distribution,

the constraints 4.3.3 and 4.3.4 can be written as

min
λi


−ln d−

n∑
i=1

λiLi − k + 1

Li√
n∑
i=1

λi
Li

|
n∑
i=1

λi ≤ − ln R1

 ≥ Z1−α, (4.3.5)

max
λi


−ln d−

n∑
i=1

λiLi − k + 1

Li√
n∑
i=1

λi
Li

|
n∑
i=1

λi ≥ − ln R0

 ≤ Zβ. (4.3.6)

Note that, Z1−α and Zβ are strictly positive and negative respectively for all values

of α, β < 0.5. Now, consider the optimization problem in left hand side of the

constraint 4.3.5. Clearly, this optimization problem will attain the optimum when
n∑
i=1

λi = − ln R1, then this optimization problem can be rewritten as

min
λi

−ln d+ ln R1 + (k − 1)
n∑
i=1

1

Li√
n∑
i=1

λi
Li

such that
n∑
i=1

λi = − ln R1.

Since the numerator is a positive and independent of λi, to minimize the objective

function, it is enough to maximize the denominator. Now, using the priori information

on upper bound of failure rate, this optimization problem can be rewritten as

max
λi

n∑
i=1

λi
Li

such that
n∑
i=1

λi = − ln R1, λi ≤ ui ∀ i = 1, 2, ..., n.

This is a convex optimization problem in λi. Define ϑi = ui if i 6= j and ϑi =

−ln R1−
∑
i 6=j

ui if i = j for j = 1, 2, ..., n. Then it is clear that by assuming feasibility,

the optimum solution to above maximization problem will be at any one of these ϑi’s,
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let it be ϑ∗i . Then the constraint 4.3.5 can be written as

Z1−α

√√√√ n∑
i=1

ϑ∗i
Li
− (k − 1)

n∑
i=1

1

Li
≤ −ln d+ ln R1. (4.3.7)

In a similar way, by defining µi = ui if i 6= j and µi = −ln R0 −
∑
i 6=j

ui if i = j for

j = 1, 2, ..., n, and by assuming feasibility, the optimum solution of the maximization

problem corresponding to constraint 4.3.6 will be at any one of these µi’s, let it be

µ∗i , and then the constraint 4.3.6 can be rewritten as

Zβ

√√√√ n∑
i=1

µ∗i
Li
− (k − 1)

n∑
i=1

1

Li
≥ −ln d+ ln R0. (4.3.8)

Now, for d ∈ (0, 1), the optimal design is a convex programming problem to minimize

C =
n∑
i=1

ciLi subjected to constraints 4.3.7 and 4.3.8. It can be solved easily by using

softwares like Lingo or MATLAB.

4.3.6 Numerical Results for illustration of test plans

The method presented in the previous Section 4.3.5 is illustrated below with the

help of numerical computation. Let the number of components in a series system

be 3 and the cost vector c = (1, 1.5, 2) and the upper bound vector of failure rate

u = (0.07, 0.05, 0.07). Then the following Table 4.2 gives the optimal test times and

total testing cost for different inputs.

Table 4.2: Numerical examples for a three component series system

α β R0 R1 k L1 L2 L3 C −ln d
0.05 0.05 0.8 0.99 0 18.5457 10.543 10.8033 55.9668 0.0100503
0.05 0.05 0.8 0.99 2 46.789 32.6688 30.1852 156.163 0.0100503
0.05 0.05 0.8 0.99 0.5 10.7909 13.5219 22.4117 75.8971 0.121366
0.08 0.05 0.85 0.98 0.5 25.6508 28.7306 48.5869 165.921 0.0952889
0.05 0.08 0.85 0.98 2 62.2929 47.3764 39.8413 231.04 0.0202027
0.05 0.05 0.85 0.99 0 25.3276 11.7293 17.9093 78.7403 0.0100503
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The results are generated by running Visual C++ and LINGO11 in tandem. The

programming is done in Visual C++, within which LINGO11 is called whenever an

optimization required.

4.4 Conclusions

In this chapter, the designing of an optimal reliability test plan for a parallel and series

system with a failure rate as a random variable having quasi-density is discussed in

detail. The data are obtained through Type-I censoring scheme, and the reliability

estimator is obtained by estimating Bayesian estimator of failure rates obtained under

squared error loss. Some numerical examples are also computed to illustrate the

Bayesian approach of testing system reliability. It is observed that the proposed plan

for testing the reliability of the parallel system has about 70% savings in total testing

costs, as compared to that with existing test plans (see, [83]).



Chapter 5

Optimal Design of Reliability
Acceptance Sampling Plan Based
on Partially Accelerated Life Test
(PALT)

5.1 Introduction

In life testing, acquiring a test data at a specified normal use condition requires

a long period. This problem makes life testing a difficult, time consuming and a

costly procedure. Under such circumstances accelerated life tests (ALTs) or partially

accelerated life tests (PALTs), which can shorten the lives of test units are used.

ALT and PALT differ on the conditions at which they are applied. The test units

are run only at accelerated conditions in an ALT, whereas test units are run both at

accelerated and normal use conditions in a PALT.

Chernoff (1962: [23]) and Bessler et al. (1962: [87]) have coined and studied the

concept of accelerated life tests. The parameter, which appears in the distribution

function, is considered as a specified function of an environmental stress to which an

item on test can be subjected. The problems of estimation of unknown parameter and

of optimal design of the testing process in both sequential and non-sequential contexts

are taken into consideration. Lifetime distribution is assumed to be exponential.

119
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PALTs are often studied under Type-I and Type-II censoring schemes by numerous

authors. For example, see [77], [25], [38], [1–3], [66, 67], [4], [49], [61].

Even though there exists a number of research work related with PALT, the optimal

reliability acceptance sampling plans for a product with Weibull lifetime under PALT

is not addressed, satisfying the requirements of Type-I and Type-II error constraints.

The purpose of this chapter is to explore the design of acceptance sampling plan for

Weibull distribution, using two different life and stress relations, namely, Arrhenius

and linear stress-lifetime relationships. Here, the lifetimes of units in given lot are

used to derive the desired sampling plan. This type of sampling plan has advantages

over the existing sampling plans in the literature. Note that in traditional acceptance

sampling plan, these features are not addressed based on data obtained from ALT or

PALT. An attempt is made in this chapter to address the problem of obtaining an

acceptance sampling plan for Weibull distribution. Moreover, the exact distribution

of the MLE of the scale parameter of Weibull distribution is obtained for constructing

optimal acceptance sampling plan.

This chapter is organized as follows: First, in Section 5.2, an acceptance sampling

plan for Weibull distribution using PALT using linear life-stress relation is designed.

The Sections 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.2.5 respectively discuss about PALT proce-

dure, distributions of lifetime under normal stress condition, distributions of lifetime

under accelerated stress condition, MLE of Weibull parameter using transformed data,

and the distribution of MLEs. The optimal sampling plan is developed in Section

5.2.6. Secondly, in Section 5.3, an acceptance sampling plan for Weibull distribution

using PALT under Arrhenius life-stress relation is designed. The optimal sampling

plan is developed in Section 5.3.1. The numerical results are discussed in Section

5.4. A comparative study and discussion on linear and Arrhenius life-stress relations

used in PALT are addressed in Section 5.4.1. The conclusion of this chapter is drawn

Section 5.5.



CHAPTER 5. RELIABILITY ACCEPTANCE SAMPLING PLAN 121

5.2 Acceptance sampling plan (ASP) for Weibull distribu-
tion using PALT: Application of linear life-stress relation

In this section, acceptance sampling plan for Weibull distribution using PALT is

derived through a linear life-stress relation namely, X = T
λ

, where X denote the

lifetime of a unit under accelerated stress condition, and T is the lifetime under

normal stress condition, and λ > 0 is acceleration factor.

5.2.1 PALT procedure

Consider a sample of n independent and identically distributed (iid) units from a

lot. Let p be the proportion of units allocated to accelerated stress condition and

1 − p be the proportion of units allocated to normal stress condition. Then np is

the number of randomly chosen units from n iid units to be tested under accelerated

stress condition and n(1 − p) is the number of units randomly chosen from n units

to be tested under normal stress condition. Each unit under normal stress condition

is run until the occurrence of r1 number of failures and each unit under accelerated

stress condition is run until the occurrence of r2 number of failures.

5.2.2 Distribution of lifetime under normal stress condition

Let T be the lifetime of units under normal stress condition, following Weibull dis-

tribution with known shape parameter α and unknown scale parameter θ. Then the

probability density function of T is given by

f1(t, θ, α) =
α

θ

(
t

θ

)α−1

e−( tθ )
α

, t ≥ 0, α > 0, θ > 0, (5.2.1)

where t is the value of the random variable T .

5.2.3 Distribution of lifetime under accelerated stress condition

Let X be the lifetime of unit under accelerated stress condition with the acceleration

factor λ. Assume that, at accelerated stress condition, the lifetime of an unit is
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X = T
λ
, λ > 0, with cumulative distribution function given by

F2(X) = P (X ≤ x) = P

(
T

λ
≤ x

)
= P (T ≤ λx) = 1− e−(λxθ )

α

, (5.2.2)

and probability density function

f2(x, α, λ, θ) =
d

dx
(F2(x)) =

αλ

θ

(
λx

θ

)α−1

e−(λxθ )
α

, α > 0, θ > 0, λ > 0. (5.2.3)

From equation 5.2.2 and equation 5.2.3, it is clear that X follows Weibull distribution

with shape parameter α and scale parameter θ
λ
.

5.2.4 An MLE of Weibull parameter using transformed data

In this section, to derive an MLE of Weibull parameter, consider the transformation

Z = Tα. Since the shape parameter α is constant and known in the probability

density function of T , the probability density function of Z is given by

f3(z, θ, α) =
1

θα
e−

z
θα =

1

δ
e−

z
δ , δ > 0, (5.2.4)

where δ = θα, and the cumulative density function is

F3(z) = 1− e−
z
δ . (5.2.5)

Also X = T
λ

implies Xα =
(
T
λ

)α
= Tα

λα
. Let Z ′ = Xα, then the cumulative distribution

function of Z ′ is given by

F4(z′) = P (Z ′ ≤ z′) = P (Xα ≤ z′) = P

(
Tα

λα
≤ z′

)
= P (Tα ≤ z′λα) = F3(xλα).

That is,

F4(z′) = 1− e−
xλα

δ (5.2.6)

and the probability density function of Z ′ is given by

f4(z′, θ, α, λ) =
λα

δ
e−

xλα

δ , λ > 0, δ > 0. (5.2.7)

That is, Z ′ = Xα follows Exponential distribution with parameter λα

δ
, having mean

lifetime δ
λα

.
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Let Tj, j = 1, 2, · · · , n(1 − p) be the lifetime of j − th unit under normal stress

condition and Xj, j = 1, 2, · · · , np be the lifetime of j − th unit under accelerated

stress condition. Then Zj = Tαj , j = 1, 2, · · · , n(1− p) follows Exponential distribu-

tion with parameter δ and Z ′j = Xα
j , j = 1, 2, · · · , np follows exponential distribution

with parameter λα

δ
. Consider the likelihood function L of Z ′j, j = 1, 2, · · · , np and

Zj, j = 1, 2, · · · , n(1− p), and which is given by

1

δ
e
−z1
δ

1

δ
e
−z2
δ · · · 1

δ
e
−zr1
δ

(
e
−zr1
δ

)n(1−p)−r1 λα

δ
e
−z′1λ

α

δ
λα

δ
e
−z′2λ

α

δ · · ·

λα

δ
e
−z′r2λ

α

δ

(
λα

δ
e
−z′r2λ

α

δ

)np−r2
.

That is,

L =

(
1

δ

)r1 (λα
δ

)r2
e
− 1
δ

r1∑
j=1

zj
e−(n(1−p)−r1)

zr1
δ e
−λ

α

δ

r2∑
j=1

z′j
e−(np−r2)

z′r2λ
α

δ .

Then the log likelihood function, ln(L) is given by

−r1 ln(δ)+r2 ln(λα)−r2 ln(δ)−1

δ

r1∑
j=1

zj−(n(1−p)−r1)
zr1
δ
−λ

α

δ

r2∑
j=1

z′j−(np−r2)
z′r2λ

α

δ
.

To find the maximum likelihood estimator of δ and λα, equate ∂ln(L)
∂δ

and ∂ln(L)
∂λ

to

zero. That is,

∂ln(L)

∂δ
= 0⇒ −r1

δ
− r2

δ
+

r1∑
j=1

zj

δ2
+

(n(1− p)− r1)zr1
δ2

+

λα
r2∑
j=1

z′j

δ2
+

(np− r2)z′r2
δ2

= 0.

This implies

−(r1 + r2) +

r1∑
j=1

zj

δ
+

(n(1− p)− r1)zr1
δ

+

λα
r2∑
j=1

z′j

δ
+

(np− r2)z′r2
δ

= 0.

Then,

δ̂ =

r1∑
j=1

zj + (n(1− p)− r1)zr1 + λα

[
r2∑
j=1

z′j + (np− r2)z′r2

]
r1 + r2

.



CHAPTER 5. RELIABILITY ACCEPTANCE SAMPLING PLAN 124

Let P1 =
r1∑
j=1

zj + (n(1− p)− r1)zr1 and P2 =
r2∑
j=1

z′j + (np− r2)z′r2 .

Then

δ̂ =
P1 + λαP2

r1 + r2

. (5.2.8)

Now

∂ln(L)

∂λ
= 0⇒ α r2

λ
−
α λα−1

r2∑
j=1

z′j

δ
−

(np− r2)z′r2αλ
α−1

δ
= 0.

This implies

r2

λ
− λα−1


r2∑
j=1

z′j

δ
+

(np− r2)z′r2
δ

 = 0⇒ r2

λ
− λα−1

(
P2

δ

)
= 0,

where

P2 =

r2∑
j=1

z′j + (np− r2)z′r2 .

Then from equation 5.2.8,

λα =
r2 δ

P2

=
r2 P1 + r2 λ

α P2

P2(r1 + r2)
⇒ λα

(
1− r2

r1 + r2

)
=

r2 P1

P2(r1 + r2)
.

Thus

λ̂α =
r2 P1

r1 P2

. (5.2.9)

Using the above equation 5.2.9, the maximum likelihood estimator of δ can be rewrit-

ten as

δ̂ =
P1 + λαP2

r1 + r2

=
P1 +

(
r2 P1

r1 P2

)
P2

r1 + r2

=
P1

r1

. (5.2.10)

Since θα = δ, note that θ̂α = P1

r1
.
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5.2.5 The distribution of δ̂ and λ̂α

To find the distribution of δ̂, from equation 5.2.10, one can see that

δ̂ =
P1

r1

=

r1∑
j=1

zj + (n(1− p)− r1)zr1

r1

⇒ δ̂
1
α =


r1∑
j=1

zj + (n(1− p)− r1)zr1

r1


1
α

.

Since δ = θα and δ̂ is a maximum likelihood estimator of δ,

θ̂ = δ̂
1
α =


r1∑
j=1

zj + (n(1− p)− r1)zr1

r1


1
α

is a maximum likelihood estimator of θ = δ
1
α . The probability density function of

the random variable Y1 = δ̂ is given by Epstein and Sobel (1953: [31]), and which is

given by

f5(y1) =
1

Γ(r1)

(
1

δ

)r1
yr1−1

1 e−
r1 y1
δ , y1 > 0. (5.2.11)

Note that θ̂ = δ̂
1
α . Let Y2 = Y

1
α

1 , then the probability density function of θ̂ is given

by

f6(y2) =
α

Γ(r1)

(r1

δ

)r1
yr1α−1

2 e−
r1 yα2
δ , y2 > 0. (5.2.12)

Also observe that

λ̂α =
r2

r1

P1

P2

=

(
P1

r1

)
(
P2

r2

) =
W1

W2

,

where W1 = P1

r1
and W2 = P2

r2
. From equation 5.2.11, δ̂ = P1

r1
follows f5(y1) with

parameter (δ, r1) and P2

r2
follows f5(y1) with parameter

(
δ
λα
, r2

)
. Note that 2r1δ̂

δ
∼

χ2(2r1) and
2r2
(
δ̂

λ̂α

)
δ
λα

∼ χ2(2r2) (see, [31] for proof).

To find the distribution of λ̂α = W1

W2
= W , note that the probability density function

of W1 is given by equation 5.2.11. Similarly, the probability density function of W2
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is given by

f7(w2) =
1

Γ(r2)

(
r2λ

α

δ

)r2
wr2−1

2 e−
r2λ

αw2
δ , w2 > 0. (5.2.13)

Let f8(w) be the probability density function of W and F (w) be the cumulative

distribution function of W . Assume that W1 and W2 are independent, then

F (w) = P

(
W1

W2

≤ w

)
⇒ P (W1 ≤ W2w) = Fw1(w2w) =

∞∫
0

Fw1(ww2)f7(w2)dw2,

where

Fw1(ww2) =

ww2∫
0

1

Γ(r1)

(r1

δ

)r1
wr1−1

1 e−
r1w1
δ dw1

=
1

Γ(r1)
e−

r1ww2
δ

(r1ww2

δ

)r1 ∞∑
n=0

(
r1ww2

δ

)n
r1(r1 + 1) · · · (r1 + n)

.

That is,

F (w) =
∞∑
n=0

1
Γ(r1)

(
r1w
δ

)r1 1
Γ(r2)

(
r2λα

δ

)r2 ( r1w
δ

)n
r1(r1 + 1) · · · (r1 + n)

∞∫
0

e−
r1w2w
δ wr1+n

2 wr2−1
2 e−

r2λ
αw2
δ dw2.

This implies

F (w) =
∞∑
n=0

1
Γ(r1)

1
Γ(r2)

(
r1w
δ

)r1+n ( r2λα
δ

)r2
r1(r1 + 1) · · · (r1 + n)

∞∫
0

wr1+r2+n−1
2 e

−w2

(
r1w
δ

+
r2λ

α

δ

)
dw2.

Hence

F (w) =
∞∑
n=0

1
Γ(r1)

1
Γ(r2)

(
r1w
δ

)r1+n ( r2λα
δ

)r2
r1(r1 + 1) · · · (r1 + n)

Γ(r1 + r2 + n)(
r1w
δ

+ r2λα

δ

)2 . (5.2.14)

Observe that in 5.2.14, as w → ∞, F (w) → ∞. That is, F (w) is not a cumulative

distribution function. Thus the assumption, W1 and W2 are independent, is wrong

and hence W1 and W2 are dependent. Since the joint density function of W1 and

W2 is unknown, one cannot get a closed-form expression for the probability density

function of W , that is, closed-form expression for probability density function of λ̂α

cannot be obtained.
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5.2.6 Design of optimal sampling plan based on linear life-stress relation

Consider a lot of units having Weibull failure time with probability density func-

tion given by equation 5.2.1. In this section, a statistical testing procedure to assess

whether the lifetime characteristics δ = θα adheres to the required level, is investi-

gated. The proposed acceptance sampling plan is stated as follows:

a) Take a random sample of size n and test np units under accelerated stress con-

dition and n(1− p) units under normal stress condition.

b) Under Type-II censoring, observe r1 failures from n(1− p) units and r2 failures

from np units.

c) From observed data under Type-II censoring, calculate the MLE δ̂ of δ.

d) If δ̂ ≥ k, (where k is a constant to be determined satisfying the probability

requirements), accept the units in the lot, otherwise reject the lot. Observe that

our acceptance rule is based on the fact that, the lot will be accepted only when

the mean lifetime under normal stress level exceeds some constant (that is, k).

Let δ∗ denote the acceptable quality level (AQL) and δ∗∗ denote the unacceptable

quality level (UQL) of a unit in the lot. The decision on the lot as to accept or reject

will be based upon the following probability requirements:

P (Reject the lot | δ ≥ δ∗) ≤ α1, (5.2.15)

P (Accept the lot | δ ≤ δ∗∗) ≤ α2, (5.2.16)

where α1 is the producer’s risk and α2 is the consumer’s risk. The unknown quantities

of the test plan (p, r1, r2, k) are determined using an optimization problem, which

minimizes the total expected testing cost (ETC) subjecting to the conditions 5.2.15

and 5.2.16. Observe that the total cost of testing involves cost associated with the

testing time and cost of failed units. Since the testing time is random, to handle

this situation and to derive optimal parameters of sampling plan, total expected

testing cost expression is derived. Then, optimal plans are obtained minimizing total

expected testing cost. Consider the following theorem which is useful in obtaining
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the probability of acceptance of the lot.

Theorem 5.2.1. Let G(t) be the CDF of chi- square distribution with 2r degrees of
freedom, then G(t) can be written as

G(t) = 1− e−t/2
r−1∑
j=0

(t/2)j

j!
, t > 0.

(See, [86] for proof).

Next, define the acceptance rule for accepting the entire lot as Pa = P (δ̂ ≥ k), where

k is a constant to be determined. Using 2r1δ̂
δ
∼ χ2(2r1) and t = 2r1k

δ
in Theorem 5.2.1,

the probability of acceptance can be obtained as

Pa = P

(
2r1δ̂

δ
≥ k

2r1

δ

)
= 1− P

(
2r1δ̂

δ
≤ k

2r1

δ

)
= e−t/2

r−1∑
j=0

(t/2)j

j!
. (5.2.17)

Let S1 =
r1∑
i=1

Tαi + (n(1− p)− r1)Tαr1 be the total time of testing under normal stress

condition after transformation and S2 =
r2∑
i=1

Xα
i + (np − r2)Xα

r2
be the total time

of testing under accelerated stress condition after transformation. Then, from the

paper [31], one can write

E (S1) = δ

r1∑
i=1

1

n(1− p)− i+ 1
, (5.2.18)

E (S2) =
δ

λα

r2∑
i=1

1

np− i+ 1
. (5.2.19)

Hence the total expected testing time using transformed data is

E(S1) + E(S2) = δ

(
r1∑
i=1

1

n(1− p)− i+ 1
+

1

λα

r2∑
i=1

1

np− i+ 1

)
.

Let C1 be the cost of testing a unit for unit time and C2 be the cost of a failed unit.

Then the total expected testing cost (ETC) involved in conducting the experiment is

ETC = (E(S1) + E(S2))C1 + (r1 + r2)C2.
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By using equations 5.2.18 and 5.2.19, ETC can be written as as

ETC = δ

(
r1∑
i=1

1

n(1− p)− i+ 1
+

1

λα

r2∑
i=1

1

np− i+ 1

)
C1 + (r1 + r2)C2. (5.2.20)

Now consider the formulation of an optimization problem which minimizes the total

expected testing cost at acceptable quality level δ∗. Using inequalities 5.2.15, 5.2.16

and equations 5.2.17 and 5.2.20, the optimization problem to find (p, r1, r2, k) can be

written as

min
p,r1,r2,k

δ∗
(

r1∑
i=1

1
n(1−p)−i+1

+ 1
λα

r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

e
−r1k
δ

r1−1∑
j=0

( r1kδ )
j

j!
≥ 1− α1, δ ≥ δ∗,

e
−r1k
δ

r1−1∑
j=0

( r1kδ )
j

j!
≤ α2, δ ≤ δ∗∗.

Since δ is an unknown parameter, one can rewrite the above optimization problem as

min
p,r1,r2,k

δ∗
(

r1∑
i=1

1
n(1−p)−i+1

+ 1
λα

r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

min
δ

e
−r1k
δ

r1−1∑
j=0

(
r1k
δ

)j
j!

≥ 1− α1, δ ≥ δ∗, (5.2.21)

max
δ

e
−r1k
δ

r1−1∑
j=0

(
r1k
δ

)j
j!

≤ α2, δ ≤ δ∗∗. (5.2.22)

Observe that as δ increases e
−r1k
δ increases. Hence the minimum with respect to δ

given in Inequality 5.2.21 occurs at δ = δ∗, and the maximum with respect to δ given

in Inequality 5.2.22 occurs at δ = δ∗∗. Hence the above optimization problem becomes

min
p,r1,r2,k

δ∗
(

r1∑
i=1

1
n(1−p)−i+1

+ 1
λα

r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

e
−r1k
δ∗

r1−1∑
j=0

( r1kδ∗ )
j

j!
≥ 1− α1,
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e
−r1k
δ∗∗

r1−1∑
j=0

( r1kδ∗∗ )
j

j!
≤ α2.

This optimization problem can be solved using genetic algorithm solver in MATLAB.

5.3 ASP using PALT: Application of Arrhenius life-stress re-
lation

In this section, again consider a sample of n independent and identically distributed

units from a lot. Let p be the proportion of units allocated for testing under ac-

celerated stress condition and 1 − p be the proportion of units allocated for normal

stress condition. Then np is the number of randomly chosen units from n iid units

to be tested under accelerated stress condition, and n(1 − p) is the number of units

randomly chosen from n units for the normal stress condition. Each unit under nor-

mal stress condition is run until the occurrence of r1 failures and each unit under

accelerated stress condition is run until the occurrence of r2 failures. Consider the

Arrhenius life-stress relationship, and is given by

A(ζ) = a0e
a1
ζ , (5.3.1)

where A is a quantifiable life measure, ζ is the stress level and a0 > 0, a1 are the

model parameter to be determined.

Let T be the lifetime of a unit under normal stress condition, having the probability

density function given by Weibull distribution with parameters α and θ1. Then the

probability density function of T is given by

f8(t, θ1, α) =
α

θ1

(
t

θ1

)α−1

e
−
(
t
θ1

)α
, t ≥ 0, α > 0, θ1 > 0. (5.3.2)

Let X be the lifetime of a unit under accelerated stress condition and let X follow

Weibull probability density function with parameters α and θ2. Then the probability

density function of X is given by

f9(x, θ2, α) =
α

θ2

(
x

θ2

)α−1

e
−
(
x
θ2

)α
, x ≥ 0, α > 0, θ2 > 0. (5.3.3)

As considered in Section 5.2.4, use the transformation Zi = Tαi and Z ′i = Xα
i , then
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each Zi follows exp(δ1) and each Z ′i follows exp(δ2), where δ1 = θα1 and δ2 = θα2 .

Let ζ1 be the normal stress level and ζ2 be the accelerated stress level. Under Arrhe-

nius life-stress model, assume that

θα1 = a0e
a1
ζ1 and θα2 = a0e

a1
ζ2 .

The likelihood function obtained from the observed data under normal stress level ζ1

is given by

L1(z1, z2, · · · , zr1 , δ1) ≈
(

1
δ1

)r1
e
−S1
δ1 =

(
1

a0e
a1
ζ1

)r1
e
−S1
δ1 ,

where S1 =
r1∑
i=1

zi + (n(1− p)− r1) zr1 .

The likelihood function obtained from the observed data under accelerated stress level

ζ2 is given by

L2(z′1, z
′
2, · · · , z′r2 , δ2) ≈

(
1
δ2

)r2
e
−S2
δ2 =

(
1

a0e
a1
ζ2

)r2
e
−

 S2

a0e

a1
ζ2


,

where S2 =
r2∑
i=1

z′i + (np− r2)z′r2 .

Now the joint likelihood function obtained using normal and accelerated stress levels

is given by

L ≈ L1L2 =

(
1

δ1

)r1
e
−S1
δ1

(
1

δ2

)r2
e
−S2
δ2 .

Then the log likelihood function is given by

lnL = −r1 (ln δ1)− S1

δ1

− r2 (ln δ2)− S2

δ2

.

The normal equations, which are obtained by differentiating L partially with respect

to δ1 and δ2 respectively are given by

∂ lnL

∂δ1

= 0 and
∂ lnL

∂δ2

= 0.

This implies
−r1

δ1

+
S1

δ2
1

= 0 and
−r2

δ2

+
S2

δ2
2

= 0.

Now MLEs of δ1 and δ2 are respectively given by the following equations:

δ̂1 =
S1

r1

and δ̂2 =
S2

r2

. (5.3.4)
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From the equation 5.3.4, one can see that

â0e
â1
ζ1 = S1

r1
and â0e

â1
ζ2 = S2

r2
.

By taking logarithm,

ln â0 +
â1

ζ1

= ln

(
S1

r1

)
, (5.3.5)

ln â0 +
â1

ζ2

= ln

(
S2

r2

)
. (5.3.6)

By subtracting equation 5.3.6 from equation 5.3.5, an estimator for a1 is given by

â1 =
ζ1ζ2

ζ2 − ζ1

[
ln

(
S1

r1

)
− ln

(
S2

r2

)]
=

ζ1ζ2

ζ2 − ζ1

ln

(
δ̂1

δ̂2

)
. (5.3.7)

By aAdding equation 5.3.5 and equation 5.3.6,

â1

[
1

ζ1

+
1

ζ2

]
+ 2 ln â0 = ln

(
S1S2

r1r2

)
.

That is,

ζ1ζ2

ζ2 − ζ1

ζ1 + ζ2

ζ1ζ2

[
ln

(
S1

r1

)
− ln

(
S2

r2

)]
+ 2 ln â0 = ln

(
S1S2

r1r2

)
.

This implies
2

ζ1 − ζ2

[
ζ1 ln

(
S1

r1

)
− ζ2 ln

(
S2

r2

)]
= 2 ln â0.

This implies

ln


(
S1

r1

) ζ1
ζ1−ζ2

(
S2

r2

) ζ2
ζ1−ζ2

 = ln â0.

Hence, an estimator for a0 is given by

â0 =

(
S1

r1

) ζ1
ζ1−ζ2

(
S2

r2

) ζ2
ζ1−ζ2

=

(
δ̂1

) ζ1
ζ1−ζ2

(
δ̂2

) ζ2
ζ1−ζ2

. (5.3.8)

Thus â0 and â1 represent MLEs of a0 and a1 respectively, by using invariance property

of MLE.

Let h0 = ζ1
ζ1−ζ2 and h1 = ζ2

ζ1−ζ2 . Define U1 = e
ζ2−ζ1
ζ1ζ2 (â1 − a1) and U2 = (2r1)h0(2r2)−h1 â0

a0
.
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Using equation 5.3.7 and equation 5.3.8, U1 and U2 can be rewritten as

U1 =

(
2S1

δ1

)
(

2S2

δ2

) (2r2

2r1

)
and U2 =

(
2S1

δ1

)h0
(

2S2

δ2

)h1 ,
where U1 and U2 are pivotal quantities. The following theorem will be useful for

obtaining the distributions of U1 and U2.

Theorem 5.3.1. Consider S1 and S2 are defined in Section 5.3, then S1 and S2 are
independent, and the distribution of 2Si

δi
∼ χ2(2ri), i = 1, 2. (For proof see, [31]).

To obtain the distributions of U1 and U2, the following theorem will be used.

Theorem 5.3.2. The cumulative density functions of the pivotal quantities U1 and
U2 are given by

a) F (u1, r1, r2) = I r1u1
r1u1+r2

(
r1
2
, r2

2

)
, where I is the regularized incomplete beta func-

tion.

b) F (u2, r1.r2) = 1−
∞∫
0

g1(t)e−w/2
r−1∑
j=0

(w/2)j

j!
dt.

Proof:

Let V1 = 2S1

δ1
and V2 = 2S2

δ2
, then the following are true:

1. the cumulative distribution function of U1 is obtained as follows.

Since U1 is the ratio of two independent Chi-square random variables with re-

spective degrees of freedoms 2r1 and 2r2, U1 ∼ F (2r1, 2r2).

2. The cumulative distribution function of U2 is obtained as follows.

FU2(u) = P (U2 ≤ u) = P
(
V
h0
1

V
h1
2

≤ u
)

= P
(
V h0

1 ≤ uV h1
2

)
= P

(
V1 ≤ (uV h1

2 )
1
h0

)
= E

(
P
(
V1 ≤ (uV h1

2 )
1
h0

) ∣∣∣V2

)
=
∞∫
0

P
(
V1 ≤ (uV h1

2 )
1
h0

∣∣∣V2 = t
)
g1(t)dt

=
∞∫
0

G(y)g1(t)dt = 1−
∞∫
0

g1(t)e−w/2
r−1∑
j=0

(w/2)j

j!
dt,

where G(y) is the cumulative distribution function of χ2(2r1), g1(t) is the prob-

ability density function of χ2(2r2) and w = (uV h1
2 )

1
h0 .
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5.3.1 Design of optimal sampling plan based on Arrhenius life-stress re-
lation

Consider a lot of units having Weibull failure time with probability density function

given in equation 5.2.1. A statistical testing procedure designed to assess whether

the lifetime characteristics δ1 = θ1
α adheres to the required level. The proposed

acceptance sampling plan is stated as follows:

a) Take a random sample of size n and test np units under accelerated stress con-

dition and n(1− p) units under normal stress condition.

b) Under Type-II censoring, observe r1 failures from n(1− p) units and r2 failures

from np units.

c) From observed data under Type-II censoring, calculate the MLE δ̂1 of δ1.

d) If δ̂1 ≥ k, accept the units in the lot, otherwise reject the lot. Observe that our

acceptance rule is based on the fact that, the lot will be accepted only when the

mean lifetime under normal stress level exceeds some constant, say k, which is

to be determined.

Let δ1
∗ denote the acceptable quality level (AQL) and δ1

∗∗ denote the unacceptable

quality level (UQL) of a unit in the lot. The decision on the lot as to accept or reject

will be based upon the following probability requirements:

P (Reject the lot | δ1 ≥ δ1
∗) ≤ α1, (5.3.9)

P (Accept the lot | δ1 ≤ δ1
∗∗) ≤ α2, (5.3.10)

where α1 is the producer’s risk and α2 is the consumer’s risk. The unknown quantities

of the test plan (p, r1, r2, k) are determined by solving an optimization problem, which

minimizes the total expected testing cost (ETC) subjecting to the conditions 5.2.15

and 5.2.16. The ETC that considered here is the one which is defined in Section 5.2.6.

Hence the acceptance rule for accepting the entire lot is defined as Pa = P (δ̂1 ≥ k),

where k is a constant to be determined. Using 2r1δ̂1
δ1
∼ χ2(2r1) and t = 2r1k

δ1
in Theorem
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5.2.1, the probability of acceptance becomes,

Pa = P

(
2r1δ̂1

δ1

≥ k
2r1

δ1

)
= 1− P

(
2r1δ̂1

δ1

≤ k
2r1

δ1

)
= e−t/2

r−1∑
j=0

(t/2)j

j!
. (5.3.11)

Also, note that

E (S1) = δ1

r1∑
i=1

1

n(1− p)− i+ 1
, (5.3.12)

E (S2) = δ2

r2∑
i=1

1

np− i+ 1
. (5.3.13)

Hence the total expected testing time using transformed data is

E(S1) + E(S2) = δ1

r1∑
i=1

1

n(1− p)− i+ 1
+ δ2

r2∑
i=1

1

np− i+ 1
.

Let C1 be the cost of testing a unit for unit time and C2 be the cost of a failed unit,

then the total expected testing cost (ETC) involved in conducting the experiment is

given by

ETC =

(
δ1

r1∑
i=1

1

n(1− p)− i+ 1
+ δ2

r2∑
i=1

1

np− i+ 1

)
C1 + (r1 + r2)C2. (5.3.14)

Since the unknowns δ1 and δ2 are there in the expression for ETC, we minimize ETC

at δ∗1 and δ∗2 (that is, for fixed values of δ1 and δ2 at normal and accelerated stress

level respectively). Hence using inequalities 5.3.9, 5.3.10 and equations 5.3.11 and

5.3.14, the optimization problem to find (p, r1, r2, k) can be written as

min
p,r1,r2,k

(
δ∗1

r1∑
i=1

1
n(1−p)−i+1

+ δ∗2
r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

e
−r1k
δ1

r1−1∑
j=0

(
r1k
δ1

)j
j!
≥ 1− α1, δ1 ≥ δ1

∗,

e
−r1k
δ1

r1−1∑
j=0

(
r1k
δ1

)j
j!
≤ α2, δ1 ≤ δ1

∗∗.

Since δ1 and δ2 are unknown parameters in above constraints, one can rewrite the

above optimization problem as
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min
p,r1,r2,k

(
δ∗1

r1∑
i=1

1
n(1−p)−i+1

+ δ∗2
r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

min
δ1

e
−r1k
δ1

r1−1∑
j=0

(
r1k
δ1

)j
j!

≥ 1− α1, δ1 ≥ δ1
∗, (5.3.15)

max
δ1

e
−r1k
δ1

r1−1∑
j=0

(
r1k
δ1

)j
j!

≤ α2, δ1 ≤ δ1
∗∗. (5.3.16)

Note that as δ1 increases e
−r1k
δ1 increases. Hence the minimum with respect to δ1 given

in Inequality 5.3.15 occurs at δ1 = δ1
∗ and the maximum with respect to δ1 given in

Inequality 5.3.16 occurs at δ1 = δ1
∗∗. Hence the above optimization problem becomes

min
p,r1,r2,k

(
δ∗1

r1∑
i=1

1
n(1−p)−i+1

+ δ∗2
r2∑
i=1

1
np−i+1

)
C1 + (r1 + r2)C2

such that

e
−r1k
δ1
∗
r1−1∑
j=0

(
r1k
δ1
∗

)j
j!
≥ 1− α1,

e
−r1k
δ1
∗∗

r1−1∑
j=0

(
r1k
δ1
∗∗

)j
j!
≤ α2.

This optimization problem can be solved using genetic algorithm solver in MATLAB.

5.4 Numerical results and discussions

In this section, the numerical results obtained for the optimal test plan discussed in

Section 5.2 and Section 5.3 are presented. First, consider the case of acceptance sam-

pling plan for Weibull distribution using linear life-stress model discussed in Section

5.2. Consider an example, which is included in Table 5.1 given below. For a set of

values, the cost of testing a unit for unit time (C1 = 1), the cost of a failed unit

(C2 = 1), and the value of the shape parameter of the Weibull distribution α = 2, for

the choices of producer’s risk α1 = 0.1, consumer’s risk α2 = 0.1, acceptable quality

level δ∗ = 900, unacceptable quality level δ∗∗ = 200, number of samples n = 40 and

the acceleration factor λ = 2, the optimal values of total expected testing cost (ETC)
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is 1079.5, the number of failures r1 = 5, r2 = 2 and the lot acceptance constant

k = 329.2345 are obtained. Thus the test plan is to accept the lot whenever δ̂ exceeds

329.2345, otherwise reject the lot.

Table 5.1: Optimal acceptance sampling plans using linear model

The values of k, r1 and r2 for various choices of (α1, α2), (δ∗, δ∗∗), n, λ, α = 2
and C1 = 1, C2 = 1.

(α1, α2) (δ∗, δ∗∗) n λ p (r1, r2) k ETC
(0.1, 0.1) (900, 200) 40 2 0.6554 (5, 2) 329.2345 1079.5
(0.1, 0.05) (900, 200) 40 2 0.6554 (5, 2) 428.4553 1079.5
(0.05, 0.05) (900, 200) 40 2 0.6492 (6, 2) 348.8147 1334.3
(0.1, 0.1) (1600, 400) 50 3 0.7301 (6, 2) 729.1776 3299.3
(0.1, 0.05) (1600, 400) 50 3 0.7158 (9, 2) 591.6600 4625.9
(0.05, 0.05) (1600, 400) 50 3 0.7159 (9, 2) 587.5489 4266.0
(0.05, 0.05) (1800, 400) 30 3 0.6821 (9, 2) 587.1894 9752.2
(0.01, 0.05) (1800, 400) 30 3 0.7240 (5, 2) 728.7510 5220.8
(0.1, 0.1) (1800, 400) 30 3 0.7360 (4, 2) 700.3257 4010.1

Next, consider some examples in Table 5.2 to illustrate acceptance test plan using

Arrhenius life-stress model. For a set of values, C1 = 1, C2 = 1 and α = 1, for

α1 = 0.05, α2 = 0.05, acceptable quality level δ∗1 = 270, unacceptable quality level

δ∗∗1 = 50, n = 50 and the acceleration factors ζ1 = 1, ζ2 = 2, the optimal values of

total expected testing cost (ETC) is 43.7748, the number of failures r1 = 6, r2 = 1

and the constant k = 80.1196 are obtained. Thus the lot will be rejected whenever

δ̂1 > 0.801196.

Table 5.2: Optimal acceptance sampling plans using Arrhenius model

The values of k, r1 and r2 for various choices of (α1, α2), (δ∗1 , δ
∗∗
1 ), n, δ2, α =

1, ζ1 = 1, ζ2 = 2 and C1 = 1, C2 = 1.
(α1, α2) (δ∗1 , δ

∗∗
1 ) n δ∗2 p (r1, r2) k ETC

(0.05, 0.05) (270, 50) 50 37 0.1217 (6, 1) 80.1196 43.7748
(0.05, 0.05) (504, 60) 30 42 0.0929 (5, 1) 101.6579 92.3034

(0.1, 0.1) (1200, 160) 30 60 0.0687 (4, 1) 510.9784 153.5640
(0.05, 0.1) (1200, 160) 30 60 0.1221 (4, 2) 362.7429 221.3770
(0.05, 0.05) (1200, 160) 30 60 0.1221 (4, 2) 321.8990 221.3770
(0.05, 0.05) (1500, 200) 20 67 0.1002 (5, 2) 521.5325 507.1096
(0.1, 0.05) (1500, 200) 20 67 0.1306 (4, 2) 324.6586 309.4506
(0.1, 0.1) (1500, 200) 20 67 0.1621 (3, 2) 277.6770 215.2409
(0.1, 0.1) (2000, 300) 10 90 0.1 (4, 1) 402.5021 722.3354
(0.05, 0.1) (2000, 300) 10 90 0.2 (5, 2) 403.6784 1172.7
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5.4.1 Comparative study and discussion of Linear and Arrhenius life-
stress models

For a set of values, the cost of testing a unit for unit time C1 = 1, the cost of a failed

unit C2 = 1 and the value of the shape parameter of the Weibull distribution α = 2,

acceptable quality level δ∗ = δ∗1 = 1800, unacceptable quality level δ∗∗ = δ∗∗1 = 400,

number of samples n = 40 and the acceleration factor λ = 3, for different values of

the producer’s risk α1 and consumer’s risk α2, the following tables compare the total

expected testing cost obtained under linear and Arrhenius life-stress models. Let %R

denote the percentage of reduction of cost under Arrhenius model compared to that

in linear model.

Table 5.3: Optimal acceptance sampling plans using linear and Arrhenius model with fixed α1 = 0.1

Linear model Arrhenius model
α2 p r1, r2 k ETC α2 p r1, r2 k ETC %R
0.1 0.7360 4,1 670.2815 4009.1 0.1 0.0687 4,1 711.891 297.2392 92.5
0.01 0.711 6,2 930.8076 6547.7 0.01 0.0494 6,1 866.5972 444.6027 93.21
0.001 0.6818 8,2 987.26 9661 0.001 0.0463 8,1 982.5218 604.2052 93.74
0.0005 0.7 8,3 1033.4 9699 0.0005 0.0333 9,1 918.0819 684.3313 92.94
0.0001 0.6 10,5 1048.5 13693 0.0001 0.0334 11,1 959.8846 771.0734 94.36

Table 5.4: Optimal acceptance sampling plans using linear and Arrhenius model with fixed α2 = 0.1

Linear model Arrhenius model
α1 p r1, r2 k ETC α1 p r1, r2 k ETC %R
0.1 0.7364 4,1 671.5725 4009.1 0.1 0.0687 4,1 698.7491 297.2392 92.5
0.01 0.6818 8,3 592.7106 9662 0.01 0.0361 8,1 598.0348 601.471 93.77
0.001 0.6291 11,3 561.2797 16247 0.001 0.0425 11,1 537.2504 865.8627 94.67
0.0005 0.6 12,3 555.6039 19408 0.0005 0.0337 12,1 542.9913 957.9362 95.06
0.0001 0.5 15,5 537.7993 42873 0.0001 0.0346 15,1 540.2972 1281.8 97.01

5.5 Conclusions

In this chapter, optimal design of acceptance sampling plans based on data obtained

from partially accelerated life test are obtained by using linear and Arrhenius stress-

life relationships. Type-II censoring scheme is used to obtain the data. The Maximum

likelihood estimates of unknown parameter of Weibull distribution and acceleration
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factor are obtained for linear model. Similarly, MLEs of model parameters are ob-

tained in case of Arrhenius model as well. Also, optimal acceptance sampling plans

are developed using linear and Arrhenius stress-life relation. Several examples are

presented in Table 5.1 and Table 5.2 to illustrate optimal acceptance test plans. It is

observed that test cost involved in constructing acceptance sampling plan is random

in nature. Hence, an expression for expected testing cost is given and the same is

illustrated through several examples. However, the actual cost involved in testing

may be less than that reported in this work. It is observed that when the values of

producer’s and consumer’s risks decreases, the testing cost is increasing in plans based

on both linear and Arrhenius stress-life relationships. Also, the total expected testing

cost is less in plan based on Arrhenius model as compared to that in linear model,

and it is observed that Arrhenius model is more cost-effective than linear model.



Chapter 6

Degradation Growth Models in the
Estimation of Bayesian System
Reliability

6.1 Introduction

In this chapter, as a substitute for a destructive testing procedure in estimating

system reliability, readily available degradation data of systems are considered. It is

difficult to estimate the system reliability for systems that are designed to achieve

high reliability using data that consists of a small number of failures obtained from

life tests that record only time to failure. Reliability of such systems depends on the

dynamic balance between stress (which accumulate over time) and the strength. For

example, a vehicle axle fails, when the depth of a crack exceeds a critical level (see,

[70]). Measurements taken over time on degradation or accumulated stress contain

information about the reliability of units. There are several works in the literature, on

the modeling of degradation leading to failure. Gorjian et.al (2010: [39]) and Nikulin

et.al (2010: [68]) are examples of the papers in this direction. In many of these models

it is common to choose a fixed threshold s(t) = s for the degradation X(t) for all

t ≥ 0. The reliability at time t for these models is given by R(t) = P [X(t) < s]. Even

with data from a relatively small number of units, one can hope to achieve better

specification of reliability by harnessing this information (see, [20]). Similar studies

140
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in this area, were done in [93], [24], [22], [98], [96] and [97].

Murray (1993: [69]) initially performed the degradation data analysis by setting

models to sample path for the individual units and obtained pseudo failure times.

Further, these failure times were analyzed using common life data analysis methods.

Meeker et.al. (2009: [64]) took the random effects model to describe the unit-to-unit

variability and that showed how a degradation model along with a failure definition,

induces a failure time distribution. Marta. A. Freitas et al. (2009: [33]) made it clear

by presenting three classical methods: namely, analytical, numerical and approximate

methods to estimate the failure time distribution of degradation models D(t) = βt

and D(t) = (1/β)t. They used various parametric distributions such as Weibull,

Lognormal and normal distributions for the random parameter. Illustrations were

also presented as a case study on train wheel degradation data. Julio C. Fereira

et.al (2012: [32]) discussed the case study on train wheel degradation data by taking

D(t) = α0 + eηt as degradation model with η specifying the random effect parameter.

Time to failure distribution of wheels is obtained based on the position of wheels.

Later, Freitas et al. (2010: [34]) conducted a similar study by presenting five methods

of degradation data analysis. Parametric degradation models by considering linear

degradation paths and simple non-linear degradation paths, are studied by authors

in [8], [58] and [40]. The non-linearity nature (increasing/decreasing) of measurements

can be seen in real life examples like train wheel degradation data and drug potency

degradation data.

Degradation was modeled as a function of time t by Lu and Meeker (1993: [20]).

The function is given by X(t) = µ(t, θ̄, φ̄), t ≥ 0, where φ̄ is a vector of fixed

effect parameters, θ̄ is a vector of random effect parameters and the degradation is

measured with additive error at specified times. In their model, the event of a critical

crack length exceeding a constant level of 1.6 inches is defined as a failure (that is,

s(t) = 1.6 inches). They had considered a data set consisting of fatigue crack length

measurements at equi-spaced time points for many metallic specimens under test.

Thus the degradation path is known for some systems, and in such cases, useful

information on the reliability of a product can be obtained from these degradation
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measurements. As a contribution to estimation using degradation data, in this chap-

ter, a degradation model having exponential degradation path with positive degra-

dation rate, which follows a Weibull distribution with known shape parameter and

unknown scale parameter is considered. The corresponding unknown parameters are

estimated. Baye’s estimate of scale parameter of Weibull distribution is also ob-

tained, and thereby Bayesian reliability of first kind and second kind for the system

are computed.

The rest of the chapter is organized as follows. Section 6.2 describes the general

degradation path model, the exponential degradation model and illustrates the reli-

ability estimation methodology. In Section 6.3, the Bayesian estimation of reliability

under informative and noninformative priors are presented. Section 6.4 contains the

bootstrap method for finding standard error of Bayes estimator of α, with respect to

both informative and noninformative priors. Section 6.5 contains the Gibbs sampling

procedure for estimating reliability. Section 6.6 provides the numerical illustration

and Section 6.7 gives the conclusions.

6.2 General degradation path model

As an example of degradation modeling, Lu and Meeker (1993: [20]) introduced the

General Path Model to move reliability analysis methods from time-of-failure analysis

to process-of-failure analysis. The observed degradation, that is the degradation of

i− th unit at time tj, is given by

yij = ηij + εij, i = 1, 2, ..., k; j = 1, 2, ..., n,

where ηij = η(tj, Φ, Θi), n is the number of inspections, tj is the time of the j − th
measurement, εij is the measurement error with constant variance, ηij is the actual

path of the i− th unit at time tj, Φ is the vector of fixed-effect parameters, common

for all units, Θi is the vector of the i− th unit random-effect parameters, representing

individual unit characteristics. Θi and εij are assumed to be independent of each

other.
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6.2.1 Exponential degradation model

Freitas et.al (2010: [35]), have considered a linear degradation path model for train

wheels degradation, to obtain their lifetime distribution. Bae and Kvam (2008: [91])

considered the exponentially decreasing degradation path. Gebraeel et.al (2005: [37])

developed a Bayesian updating method that uses real-time condition monitoring data

to update the stochastic parameters of an exponential degradation model. In this

chapter, a strictly increasing degradation path is considered and is given by

y(t) = aeθt, a > 0, θ > 0, (6.2.1)

where a is the initial degradation, θ is the random parameter representing the rate

of degradation and t is the time. Many real life situations can be modelled by using

strictly increasing degradation path. For example, the train wheel degradation data

considered in [35], is an example of such kind.

6.2.2 Description of reliability function

Assume that the rate of degradation parameter, θ in the model given by equation

6.2.1 described above, follows Weibull distribution with unknown scale parameter α

and known shape parameter β. Then, the probability density function of θ is given

by

f(θ) = αβθβ−1e−αθ
β

, α > 0, β > 0 and θ > 0. (6.2.2)

The cumulative distribution function is then given by

F (θ) = 1− e−αθβ .

Let s be the threshold value, then the reliability at time t is described as R(t) =
Pr(y(t) < s). Observe that, this definition of reliability make sure that the amount
of degradation at time t, does not exceed the threshold s. When the degradation
crosses s, then the system is categorized as a failed one (see [91]). That is, R(t) =
Pr
(
aeθt < s

)
, s > a, by using equation 6.2.1. Then R(t) can be computed as R(t) =

Pr
(
θ < log(s/a)

t

)
, t > 0, log(s/a) > 1.

Since θ follows Weibull distribution, the reliability function is given by

R(t) = 1− e−α(
log(s/a)

t )
β

; t, α, β > 0 and
s

a
> 1. (6.2.3)
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It is easy to verify that, when t→ 0, R(0) = 1 and when t→∞, R(∞) goes to 0.

6.3 Bayesian estimation procedure

In this section, a brief explanation of Bayesian estimation procedure, is presented.

Suppose θ follows Weibull distribution with parameters (α, β). Possible values of the

parameter α are inferred by assuming that the uncertainty about α can be expressed

by a probability density function π(α), which is called the prior density. This prior

density or distribution of a parameter is the probability distribution that represents

uncertainty about the parameter before the examination of current data. Assuming

that the sample is generated by a conditional probability density f(θ | α), a sample

of observations is collected to learn more about α.

In the light of the given data on θ, the uncertainty about α is to be updated. That

is, to find the conditional distribution of α when θ is given. Using Bayes theorem,

the posterior distribution of the parameter is obtained by

P (α | θ) =
L(x | α, θ)π(α)∫
L(x | α, θ)π(α) dα

,

where L(x | α, θ) is the likelihood function of the given random sample, x = (x1, x2,

· · · , xn). A prior distribution is considered noninformative, if compared to the like-

lihood function, it is relatively flat. Thus, π(α) is noninformative, if it has minimal

impact on the posterior distribution of α. An informative prior is that which is not

dominated by the likelihood function and which has an impact on the posterior dis-

tribution. If the likelihood function is dominated by the prior distribution, then the

prior is certainly an informative one. A proper use of prior distributions illustrate the

power of the Bayesian method: information gathered from the previous study, past

experience, or expert opinion can be combined with current information in a natural

way (see, [41]).

In practical situations, like in case of measuring the strength of a concrete, one

can measure the strength of the concrete made at any time t, given that cracks on

the concrete are developing as per the law y = aeθt. For example, rate of degradation

(θ) of the concrete can be assumed as per the exponential law. That is, θ ∼ E(λ),
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where λ is the degradation per unit time. Further, suppose that we have measured

data on degradation at specified time points, then the knowledge on degradation can

be modelled using appropriate prior distribution, say π(α, β) for λ, and hence one

can obtain Bayes estimate of λ, and thereby corresponding system reliability. In the

following section, Bayesian system reliability by considering increasing degradation

path model given by equation 6.2.1, is obtained.

For Bayesian estimation of R(t), noninformative and informative prior probability

distributions for α are considered. For these two priors, the first kind of Bayesian

reliability estimator and the second kind of Bayesian reliability estimator are obtained

(see, for example, [6]).

6.3.1 Bayesian estimation of reliability using noninformative prior

Assume that the rate of degradation θ follows Weibull distribution with parameters

α and β, then the probability density function of θ is given by

f(θ) = αβθβ−1e−αθ
β

, α > 0, β > 0 and θ > 0, (6.3.1)

where α is the unknown scale parameter and β is the known shape parameter. Let

the noninformative prior for the parameter α follow Quasi density function given by

π(α) = 1
αk

, k > 0. Next, consider the following theorem which will give posterior

distribution of α given θ, when noninformative Quasi prior is considered for α.

Theorem 6.3.1. The posterior distribution of the parameter α given θ follows Gamma

distribution with parameters n− k + 1 and
n∑
i=1

θβi , where θ follows Weibull (α, β).

Proof: The posterior distribution of α is given by

P (α | θ) =
L(x | α, θ)π(α)∫
L(x | α, θ)π(α) dα

=

αnβn
n∏
i=1

θβ−1
i e

−α
n∑
i=1

θβi 1
αk

∞∫
0

αnβn
n∏
i=1

θβ−1
i e

−α
n∑
i=1

θβi 1
αk
dα
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=
αn−k

Γ(n− k + 1)

(
n∑
i=1

θβi

)n−k+1

e
−α

n∑
i=1

θβi
.

This implies P (α | θ) follows Gamma distribution with parameters n − k + 1 and
n∑
i=1

θβi .

The Bayesian estimator α̂ of α using squared error loss function is obtained by mini-

mizing the mean square error E ((α̂− α)2). That is, consider the following:

E
(
(α̂− α)2

)
=

∫
(α̂− α)2π(α) dα.

Then d
dα̂
E ((α̂− α)2) = 0 gives α̂ = E(α | x).

That is, the posterior mean is the required Bayesian estimator of α. The expectation

of α from posterior distribution P (α | θ) is then the required Bayesian estimator.

That is,

α̂ =
n− k + 1

n∑
i=1

θβi

.

The Bayesian estimator of reliability of first kind R̂1(t) is obtained by replacing α by
α̂ in expression given by equation 6.2.3. Thus

R̂1(t) = 1− e−α̂(
log(s/a)

t )
β

.

Hence,

R̂1(t) = 1− e
−

n−k+1
n∑
i=1

θ
β
i

( log(s/a)t )
β

.

The Bayesian estimator of reliability of Second kind R̂2(t) is obtained by

R̂2(t) = E (R(t) | α)

=

∞∫
0

(
1− e−α(

log(s/a)
t )

β
) αn−k

Γ(n− k + 1)

(
n∑
i=1

θβi

)n−k+1

e
−α

n∑
i=1

θβi

 dα.

(See, [6] for more details).
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Hence,

R̂2(t) = 1−

(
n∑
i=1

θβi

)n−k+1

(
n∑
i=1

θβi +
(
log(s/a)

t

)β)n−k+1
.

6.3.2 Bayesian estimation of reliability using informative prior

Assume that the informative prior for the parameter α follow Gamma distribution

with parameters c and d. Then,

π(α) =
dc

Γ(c)
αc−1e−dα, c > 0 and d > 0.

Next, consider the following theorem which will give posterior distribution of α given

θ, when informative Gamma prior is considered for α.

Theorem 6.3.2. The posterior distribution of the parameter α given θ follows Gamma

distribution with parameters n + c and d +
n∑
i=1

θβi , where θ has the density given by

equation 6.3.1.

Proof: The posterior distribution of α is given by

P (α | θ) =
L(x | α, θ)π(α)∫
L(x | α, θ)π(α) dα

.

After incorporating the expression of π(α) and, evaluating the above expression, note

that

P (α | θ) =

αnβn
n∏
i=1

θβ−1
i e

−α
n∑
i=1

θβi dc

Γ(c)
αc−1e−dα

∞∫
0

αnβn
n∏
i=1

θβ−1
i e

−α
n∑
i=1

θβi dc

Γ(c)
αc−1e−dα dα

.

Simplification of above expression gives

P (α | θ) =

(
d+

n∑
i=1

θβi

)n+c

Γ(n+ c)
αn+c−1e

−α
(
d+

n∑
i=1

θβi

)
. (6.3.2)

This implies P (α | θ) follows Gamma distribution with parameters n+c and d+
n∑
i=1

θβi .
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Using squared error loss function, the posterior mean is the Bayesian estimator of

the parameter α. It is easy to verify that

α̂ =
n+ c

d+
n∑
i=1

θβi

.

The Bayesian estimator of reliability of first kind, R̂1(t) is obtained by substituting

α̂ in equation 6.2.3. That is,

R̂1(t) = 1− e−α̂(
log(s/a)

t )
β

= 1− e
−

 n+c

d+
n∑
i=1

θ
β
i

( log(s/a)t )
β

.

The Bayesian estimator of reliability of Second kind R̂2(t) is obtained by taking

expectation of R(t), using posterior distribution of α in equation 6.3.2. Thus,

R̂2(t) = E (R(t) | α) . That is,

R̂2(t) =

∞∫
0

(
1− e−α(

log(s/a)
t )

β
)

(
d+

n∑
i=1

θβi

)n+c

Γ(n+ c)
αn+c−1e

−α
(
d+

n∑
i=1

θβi

) dα

= 1−

(
d+

n∑
i=1

θβi

)n+c

(
d+

n∑
i=1

θβi +
(
log(s/a)

t

)β)n+c .

6.4 Bootstrap standard error of α̂

The bootstrap method to estimate standard error of α̂ can be used if the distribution

of α̂ is unknown or complicated (see, [30]). In this chapter, the degradation rate θ

follows Weibull distribution with parameters α and β. Here, n denote the number of

samples taken from Weibull distribution, c, d are the hyper parameters of α, where

α follows Gamma distribution, and B is the bootstrap sample size. The bootstrap

method to find the standard error of α̂ is given below.
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Step 1: Read the values of n, α, β. c, d and B.

Step 2: Set i = 1

Step 3: Generate n random samples θ1. θ2, · · · , θn from Weibull

distribution with parameters α and β.

Step 4: Estimate α̂(i) from random sample obtained in Step 3.

Step 5: Using the estimate α̂(i), generate a bootstrap sample with size n

from the Weibull distribution with parameters α̂(i) and β.

Step 6: i = i+ 1

Step 7: α = α̂(i)

Step 8: if i <= B go to Step 3, else go to Step 9.

Step 9: The average bootstrap estimate ¯̂α =

B∑
i=1

α̂

B
.

Step 10: The bootstrap standard error Sα̂ =

√
B∑
i=1

(α̂− ¯̂α)2

B−1
.

6.5 Gibbs sampling procedure for estimating reliability

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm for obtaining

a sequence of observations which are approximated from a specified probability dis-

tribution, when direct sampling is difficult. This Gibbs sampling is commonly used

as a means of statistical inference, especially Bayesian inference. It is a random-

ized algorithm, and is an alternative algorithms for statistical inference such as the

expectation-maximization algorithm (EM). In this section, Gibbs sampling procedure

to obtain Bayesian system reliability estimation is given in following steps:

Step 1: Assume initial value for the parameter θ. Let it be θ0.

Step 2: Let j = 1.

Step 3: Generate random value for the parameter θj from the obtained

distribution of the parameter.
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Step 4: Compute the system reliability Rj for the value of the parameter

obtained in Step 3.

Step 5: Set j = j + 1.

Step 6: Repeat the Steps 2 to 5 for M number of times.

Step 7: Obtain the approximate posterior mean of system reliability

R̂ =
1

M

M∑
j=1

Rj.

6.6 Illustrations through numerical examples

In this section, for the selected inputs, the Bayesian reliability estimate using the

degradation model y = aeθt, for the case of informative prior and noninformative

prior, are illustrated. The Bayesian reliability estimate of first and second kind ob-

tained from Gibbs sampling procedure is plotted in figures from 6.1 to 6.40.

6.6.1 Calculation of bootstrap standard error of α̂

Let n = 20 be the number of observed Weibull samples with shape parameter β = 0.7

and B denotes the bootstrap sample size. Let the initial value of the scale parameter

of Weibull distribution α = 0.9, and ¯̂α be the average bootstrap estimate of α. The

bootstrap standard error of estimated α is presented in the following Table 6.1, Table

6.2 and Table 6.3 with respect to various combination of hyper parameters, for the

case of informative prior as well as noninformative prior. It is observed that standard

error of α̂ decreases as the bootstrap sample increases. Then α̂ behaves as a minimum

variance estimator for moderately large bootstrap sample. Thus one can obtain an

Bayesian estimator of first kind using this minimum variance estimator α̂, which is

practically desirable. Let SE denote the standard error in the following tables.
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Table 6.1: Standard error of α̂ for Informative Prior

B ¯̂α for c = 1, d = 5 SE for c = 1, d = 5 ¯̂α for c = 3, d = 4 SE for c = 3, d = 4
100 0.8427 0.1843 0.9940 0.2711
200 0.8331 0.1739 0.9659 0.2108
300 0.8303 0.1679 0.9800 0.2068
400 0.8287 0.1671 0.9921 0.2036
500 0.8354 0.1647 0.9938 0.2026
600 0.8368 0.1625 0.9888 0.2003
700 0.8233 0.1565 0.9824 0.1990
800 0.8134 0.1524 0.9847 0.1963
900 0.8111 0.1459 0.9886 0.1952
1000 0.8176 0.1458 0.9799 0.1903

Table 6.2: Standard error of α̂ for Noninformative Prior

B ¯̂α for k = 1 SE for k = 1 ¯̂α for k = 2 SE for k = 2
100 1.0535 0.3329 1.0277 0.3214
200 1.0905 0,3187 1.0058 0.2799
300 1.0740 0.2881 0.9874 0.2757
400 1.0822 0.2871 0.9934 0.2644
500 1.0653 0.2816 0.9793 0.2579
600 1.0618 0.2800 0.9896 0.2556
700 1.0555 0.2792 0.9963 0.2524
800 1.0687 0.2755 1.0169 0.2511
900 1.0863 0.2703 0.9922 0.2489
1000 1.0667 0.2639 0.9790 0.2442

Table 6.3: Standard error of α̂ for Noninformative Prior

B ¯̂α for k = 8 SE for k = 8 ¯̂α for k = 15 SE for k = 15
100 0.6249 0.1813 0.2011 0.0606
200 0.6206 0.1748 0.2028 0.0572
300 0.5943 0.1683 0.1928 0.0547
400 0.5851 0.1569 0.1995 0.0540
500 0.5890 0.1550 0.1933 0.0521
600 0.5915 0.1546 0.1952 0.0509
700 0.5803 0.1503 0.1925 0.0499
800 0.5848 0.1489 0.1912 0.0498
900 0.5791 0.1462 0.1949 0.0489
1000 0.5787 0.1446 0.1941 0.0475
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6.6.2 Bayesian reliability estimate based on informative prior

For the informative Gamma prior with parameters c and d, estimates of system

reliability for increasing sample size n = {20, 50, 100, 200} and M = 500 are plotted

for four different sets of input parameters in following figures (figures 6.1 to 6.8).

These figures are respectively correspond to the input sets I1, I2, I3 and I4 given in

Table 6.4. In each of these, it can be observed that the estimated system reliability

approaches the actual reliability as the sample size increases.

Table 6.4: Inputs for informative prior

I1 I2 I3 I4

a 0.9 0.8 0.25 1
β 0.5 0.45 0.3 0.05
s 2 1.5 2.5 0.9
c 20 18 21 10
d 5 8 3 1.5

6.6.2.1 Bayesian reliability estimate of first kind R1(t)

In this section, the Bayesian reliability estimate of the first kind using informative

prior is plotted for the sample sizes n = 20, 50, 100, 200 corresponding to the inputs

given in Table 6.4 (See figures 6.1 to 6.4).

Figure 6.1: R̂1(t) corresponding to input I1 Figure 6.2: R̂1(t) corresponding to input I2
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Figure 6.3: R̂1(t) corresponding to input I3 Figure 6.4: R̂1(t) corresponding to input I4

6.6.2.2 Bayesian reliability estimate of Second kind R2(t)

In this section, the Bayesian reliability estimate of the second kind using informative

prior is plotted for the sample sizes n = 20, 50, 100, 200 corresponding to the inputs

given in Table 6.4 (See figures 6.5 to 6.8).

Figure 6.5: R̂2(t) corresponding to input I1 Figure 6.6: R̂2(t) corresponding to input I2

Figure 6.7: R̂2(t) corresponding to input I3 Figure 6.8: R̂2(t) corresponding to input I4
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6.6.3 Bayesian reliability estimate based on noninformative prior

For the noninformative Quasi prior with k = 1, 2, 8 and 15, consider the inputs given

in Table 6.5 below:

Table 6.5: Inputs for noninformative prior

I1 I2 I3 I4

a 0.9 0.8 0.25 1
β 0.5 0.45 0.3 0.05
s 2 1.5 2.5 0.9

6.6.3.1 Bayesian reliability estimate of first kind R1(t)

In this section, the Bayesian reliability estimate of the first kind using noninformative

prior is plotted for the sample sizes n = 20, 50, 100, 200 corresponding to the inputs

given in Table 6.5 (See figures 6.9 to 6.24).

Figure 6.9: R̂1(t) for the input I1, k=1 Figure 6.10: R̂1(t) for the input I1, k=2

Figure 6.11: R̂1(t) for the input I1, k=8 Figure 6.12: R̂1(t) for the input I1, k=15
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Figure 6.13: R̂1(t) for the input I2, k=1 Figure 6.14: R̂1(t) for the input I2, k=2

Figure 6.15: R̂1(t) for the input I2, k=8 Figure 6.16: R̂1(t) for the input I2, k=15

Figure 6.17: R̂1(t) for the input I3, k=1 Figure 6.18: R̂1(t) for the input I3, k=2

Figure 6.19: R̂1(t) for the input I3, k=8 Figure 6.20: R̂1(t) for the input I3, k=15
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Figure 6.21: R̂1(t) for the input I4, k=1 Figure 6.22: R̂1(t) for the input I4, k=2

Figure 6.23: R̂1(t) for the input I4, k=8 Figure 6.24: R̂1(t) for the input I4, k=15

6.6.3.2 Bayesian reliability estimate of Second kind R2(t)

In this section, the Bayesian reliability estimate of the second kind using noninfor-

mative prior is plotted for the sample sizes n = 20, 50, 100, 200 corresponding to

the inputs given in Table 6.5 (See figures 6.25 to 6.40).

Figure 6.25: R̂2(t) for the input I1, k = 1 Figure 6.26: R̂2(t) for the input I1, k = 2
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Figure 6.27: R̂2(t) for the input I1, k = 8 Figure 6.28: R̂2(t) for the input I1, k = 15

Figure 6.29: R̂2(t) for the input I2, k = 1 Figure 6.30: R̂2(t) for the input I2, k = 2

Figure 6.31: R̂2(t) for the input I2, k = 8 Figure 6.32: R̂2(t) for the input I2, k = 15

Figure 6.33: R̂2(t) for the input I3, k = 1 Figure 6.34: R̂2(t) for the input I3, and k = 2
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Figure 6.35: R̂2(t) for the input I3, k = 8 Figure 6.36: R̂2(t) for the input I3, k = 15

Figure 6.37: R̂2(t) for the input I4, k = 1 Figure 6.38: R̂2(t) for the input I4, k = 2

Figure 6.39: R̂2(t) for the input I4, k = 8 Figure 6.40: R̂2(t) for the input I4, k = 15
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6.7 Conclusions

The Bayesian estimator for the scale parameter of θ is evaluated by assuming noninfor-

mative and informative prior distributions and, thereby the corresponding estimators

of reliability are obtained in Sections 6.3.1 and 6.3.2. The following observations are

made:

a) The posterior distribution for the scale parameter α under noninformative Quasi

prior follows Gamma distribution with parameters n− c+ 1 and
n∑
i=1

θβi .

b) The posterior distribution for the scale parameter α under informative Gamma

prior follows Gamma distribution with parameters n+ c and d+
n∑
i=1

θβi .

In both informative and noninformative prior cases, it can be observed from figures,

6.1 to 6.40, that the estimated system reliability approaches the actual reliability

when the sample size increases.

In the case of Quasi prior, note that if k = 1, we will get the maximum likelihood

estimator of system reliability. In all four sets of inputs in the Table 6.5, when k = 1,

the estimated reliability is almost the same as the original reliability.

In both informative and noninformative cases, the standard error of α̂ is decreasing

when the bootstrap sample size increases. Thus one can have a Bayesian reliability

estimator by using minimum variance Bayes estimator of α.



Chapter 7

Conclusions and Scope for Future
Research

The major contributions to this thesis are (a) In existing reliability test plans, based

on two predefined constants 0 < R0 < R1 < 1, the system is subjected for its

reliability test, and it will be accepted if R, the reliability for unit time, exceeds

R1, and the same will be rejected whenever R ≤ R0. As an initial contribution,

an alternate criterion for testing the reliability of a system, namely, an acceptable

reliability interval (ARI) and unacceptable reliability interval (URI) are defined in

testing the reliability of a parallel system. Thus a small relaxation of an amount ε to

ARL is applied while accepting the system. On the other hand, the URL is increased

by an amount ε, for checking the unacceptability of the system. The same concept

can be extended to a series system as well. This criterion has some advantages in

reducing the huge burden of rejection cost. (b) In testing the reliability of a series

system based on data obtained from Type-II censoring, a normal cost of testing

is considered by several authors. But the cost of testing under Type-II censoring

need not be constant; in fact, the cost associated is a random quantity, which is

very difficult to deal with. An attempt is made in the thesis, to design reliability

test plan for a series system, by minimizing the associated maximum-total-expected-

testing-cost under Type-II censoring. (c) Based on data available on the failure rate

of components in a system, suitable prior distribution can be fitted, and the same

can be incorporated with underlying density function to derive Bayes estimate for

160
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failure rates, and thereby corresponding system reliability. As a next contribution,

Bayesian reliability test plans for parallel and series systems are designed. These

plans have advantages in savings in testing costs of the system as compared to that

with classical test plans. (d) As obtaining data under normal working conditions

of a system is more difficult, one may end up with a small amount of failure data,

or there is a need to wait for a long period to get the required amount of failure

data. In such situations, an accelerated test is the most convenient option. Thus,

an attempt is made to derive the optimal reliability sampling plan based on data

obtained from partially accelerated life test using two types of life-stress relations,

namely, linear and Arrhenius relationships. (e) Usual practice of obtaining failure

data is performing life tests on units in a given lot. These tests may be sometimes

destructive and may cause huge financial loses. One alternative to avoid such loses is

making use of readily available degradation data, as such data encloses information on

failures of the system. Thus an attempt is made to make use of such degradation data,

by considering exponential degradation growth model with positive degradation rate

(θ, which is a random variable) to obtain reliability estimate of the desired system,

as the last contribution in this thesis. The following conclusions were made in each

of the chapters.

In Chapter 2, an optimal reliability test plans for parallel systems with failure

rate as the exponential function of covariates are designed. The data are obtained

through Type-II censoring scheme. Unbiased estimator and maximum likelihood

estimator of the failure rate of the individual component in the system, are used

to estimate system reliability, and corresponding optimal reliability test plans are

designed. In the case of reliability test plan constructed using unbiased estimator

of failure rate, the resulting reliability test plan has about 60% reduction in total

testing costs. In the case of reliability test plan constructed using maximum likelihood

estimator of system reliability, definitions for satisfactory and unsatisfactory levels of

system reliability are introduced as an alternative to acceptable reliability level (ARL)

and unacceptable reliability level (URL) respectively, and they are called acceptable

reliability interval (ARI) and unacceptable reliability interval (URI). Introduction
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of these relaxed definitions have some advantages in reducing testing costs or huge

rejection cost incurred in the usual testing scenario (of using strict ARL and URL

criterion). Several numerical examples are illustrated and compared with the existing

results. It is observed that there is a significant reduction in testing costs of about

70%.

Chapter 3 presents the reliability test plan for a series system. First, reliability

test plan is constructed using the system reliability estimate obtained from unbiased

estimator of failure rate of individual components in the system. Through this work,

it is shown that for a series system, the optimum design depends on the cost of indi-

vidual components and that all components need not be tested equally. Unlike most

of the plans available in literature, in the proposed plan, the acceptance constant d∗

and the optimum sample size for each component depend upon the testing costs of in-

dividual components. Also, it is observed that no test plan in the literature uses prior

information in the form of upper bound which is a function of covariates. However,

through the proposed plan, it is observed that use of prior information and incorpora-

tion of covariates have advantage of about 79% savings in testing costs as illustrated

by examples. Secondly, maximum likelihood estimator of failure rates of components

in the system are used to obtain MLE of system reliability. The maximum-total-

expected-testing-cost expression is obtained. Since it is difficult to minimize random

testing cost involved in Type-II censoring, an optimization problem is formulated to

minimize maximum-total-expected-testing-cost and optimal parameters are obtained

subjected to the requirements of Type-I and Type-II error constraints. The results

available in the literature (for example, [82] and [73]), propose a test plan for series

system, where, (a) one has to test all components equally irrespective of cost of the

component, and the number of components in the system, (b) the failure rate is a

constant, (c) the testing cost ia a fixed constant, (d) it is not necessary to solve the op-

timization problem for the general n-component series system, instead it is sufficient

to solve the problem for one component system, (e) the acceptance constant d∗ and

the optimum sample size for each component are not depending upon testing cost. In

this work, it is observed for a series system, that (i) optimum design depends upon
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cost of the individual component and number of components in the system, (ii) the

cost is not considered as a constant under Type-II censoring, instead it is considered

as a function of time, and thereby maximum-total-expected-testing-cost involved in

testing the entire series system is minimized to obtain optimal plan parameters, (iii)

the problem is solved for a general n component series system, (iv) the acceptance

constant d∗M and the optimum sample size for each component are depending upon

testing cost. A simulation study conducted shows that in the proposed model, the

derived sampling plans actually meet the specified risks α and β. Also, from the

sensitivity analysis, it is clear that the model is sensitive in its parameters and cor-

responding output is stable. A qualitative analysis is also done. Incorporation of

covariate information in modeling failure rates of components as linear combination

of covariates and, considering the testing cost as a function of time have significant

advantage in reducing the total number of components to be tested for failure. More-

over, this type of testing the reliability of a system by obtaining data under Type-II

censoring, has an advantage of obtaining realistic results, since the system is tested

under normal working conditions. It is observed that the percentage of components

to be tested for failure is reduced by about 96%. Also, there is a significant reduction

in testing costs of about 77% as compared to that in [82], and 96% as compared to

that in [73].

Chapter 4 discusses the design of optimal reliability test plan for a series and

parallel system with failure rates of components as random variables having Quasi-

density. The data are obtained through Type-I censoring scheme, and the reliability

estimator is obtained by estimating a Bayesian estimator of component failure rates.

Some numerical examples are also computed to illustrate the Bayesian approach of

estimating system reliability and thereby to test the system reliability. The proposed

Bayesian plan has about 70% savings in total testing costs.

Optimal design of reliability acceptance sampling plans based on data obtained

from partially accelerated life test using linear and Arrhenius life-stress relationships

are presented in Chapter 5. The Type-II censoring scheme is used to obtain the

required data. The Maximum likelihood estimates of the unknown parameter of
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Weibull distribution and acceleration factor are obtained for the linear model. Simi-

larly, MLEs of model parameters are obtained in case of the Arrhenius model as well.

Several examples are presented to illustrate our optimal acceptance test plans. It

is observed that the test cost involved in constructing an acceptance sampling plan

using PALT is random. Hence an expression for expected testing cost is given and

the same is illustrated through several examples. However, the actual cost involved in

testing may be less than that reported in this work. It is observed that when the val-

ues of the producer’s and consumer’s risks decrease, the testing cost increases. Also,

the total expected testing cost is less in case of the plan obtained using the Arrhenius

model, and it is about 93% less as compared to that in the case of the linear model.

It is observed that Arrhenius life-stress model is more cost-effective than the linear

life-stress model.

Finally, in Chapter 6, degradation growth model is considered to estimate system

reliability using data collected from degradation measurements. Bayes estimate of

scale parameter α of Weibull distribution of degradation parameter θ (rate of degra-

dation) is obtained. Bayesian reliability of first kind and second kind for the system

are computed under informative and noninformative priors. The bootstrap method

is used for finding standard error of Bayes estimator of α, with respect to both infor-

mative and noninformative priors. Gibbs sampling procedure is used for estimating

reliability. The following observations are made: (i) The posterior distribution for

the scale parameter α under noninformative Quasi prior follows Gamma distribution

with parameters n − c + 1 and
n∑
i=1

θβi . (ii) The posterior distribution for the scale

parameter α under informative Gamma prior follows Gamma distribution with pa-

rameters n + c and d +
n∑
i=1

θβi . In both informative and non-informative prior cases,

it is observed that the estimated system reliability approaches the actual reliability

when sample size increases. In the case of Quasi-prior, if k = 1, we will get the

maximum likelihood estimator of system reliability. It is also observed through a nu-

merical computation that, the estimated reliability is almost the same as the original

reliability when k = 1. In both informative and non-informative cases, the standard

error of α̂ is decreasing when the bootstrap sample size increases. Thus one can have
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a Bayesian reliability estimator by using minimum variance Bayes estimator of α.

The future works shall include open problems to construct the reliability test

plan for a general series/parallel system under Type-I/Type-II censoring, with the

assumption that the components in the systems are dependent. Also, the test plans

considered in this thesis for a series system with Type-II censoring (using random

testing cost) can be extended to a parallel system by considering testing cost as a

random quantity. The acceptance sampling plan using data from step-stress partially

accelerated life test for Weibull distribution can be obtained by considering the notion

of minimizing random testing costs subjected to the requirements of Type-I and Type-

II error constraints.
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