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A B S T R A C T   

In the present study, the occurrence of microplastics (MPs) in the gut, gill, and muscle of edible fish Stolephorus 
indicus sampled from Tuticorin coastal regions of Tamilnadu, India was investigated. We recorded a total of 689 
MPs which includes 510 and 179 MPs from males and females respectively. The total abundance of MPs was 
significantly (P < 0.05) higher in the gut followed by gills and muscle. The sex-wise distribution of average MPs 
showed high in the females' gut and compared to that in males. Further, the length wise distribution of MPs was 
higher in the muscle in both male and female fish, followed by other organs. The predominance of MPs in tissues 
were transparent and blue colour with fibers and fragments in both males and females. Besides, polyethylene 
terephthalate and nylon were evidenced by the Fourier-transform infrared spectroscopy spectrum in all organs of 
fishes.   

The marine ecosystem plays a pivotal role in the world for regulating 
climate, production of oxygen, habitat for various living beings, and 
providing nutritional security for nations. In recent days marine envi-
ronments have been contaminated by various pollutants like heavy 
metals, pesticides, hydrocarbons, microplastics (MPs), etc. (Kinigopou-
lou et al., 2022; Zhang et al., 2022). Among various contaminants in the 
marine environment, nanoplastics (<100 nm) and MPs (>100 mm to 
<5 mm) are abundant pollutants that affect marine organisms (Ori-
ekhova and Stoll, 2018; Wagner and Reemtsma, 2019; Du and Wang, 
2021). MPs from industrial and domestic products are also significant 
plastic inputs, as they are released into sewage systems and eventually 
run into the oceans (McDevitt et al., 2017). MPs are being originated 
directly as primary MPs from industries and indirectly by the larger 
plastic particles fragmented via environmental factors like microbes, 
UV-radiation from sunlight, and physical abrasion processes (Sun et al., 
2020). MPs are a great concern in aquatic environments due to their 
buoyancy, slow degradability, adherence to organic and inorganic 
contaminants, and colonization of pathogenic microbes (Elgarahy et al., 
2021; Sooriyakumar et al., 2022). 

Fate of MPs has been reported to be harmful to a wide range of 
marine organisms in terms of trapping in gills, scales, false feeding, in-
testinal damage, poor digestion, growth, survival, etc. (Alak et al., 2022; 
Ahmed et al., 2023). Ingestion of MPs by marine organisms like mussels 
(Patterson et al., 2019; Kazour and Amara, 2020), decapod crustaceans 
(Valencia-Castañeda et al., 2022; Paez-Osuna et al., 2023), and fish has 
been documented (Alomar et al., 2017; Kumar et al., 2018). These 
ingested MPs can cause different adverse effects on feeding behavior, 
reduction of predatory performance, reproduction, and energy budget, 
inflammatory responses, histological changes, DNA damage, cytotox-
icity, physical damage, and mortality in aquatic organisms (Hu and 
Palic, 2020; Du et al., 2020; Chang et al., 2022). Moreover, the occur-
rence of MPs in seafood has also been documented, which can transfer to 
human consumers as a biomagnification process (Mercogliano et al., 
2020). Besides, there is no specific regulation or legislation related to 
contamination of MPs in foods including seafood, however, continuous 
exposure to MPs and its associated chemicals can produce potential 
health risks like oxidative stress, metabolic disorder, cancer, develop-
mental toxicity neurotoxicity, etc., to human consumers (Campanale 
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et al., 2020; Gamarro and Costanzo, 2022; Li et al., 2023). Earlier studies 
have shown the occurrence of MPs in edible fishes such as Rastrilleger 
kanagurta, Lateolabrax maculatus, and Cyprinus carpi. (Kumar et al., 
2018; Su et al., 2019; Barboza et al., 2020) and its possible transfer to 
human consumers (Kannan and Vimalkumar, 2021; Huang et al., 2021). 
Indian anchovy, S. indicus constitutes the most important pelagic 
resource which is distributed in tropical and subtropical regions of the 
Indo-Pacific. This species serves as an important food fish in India, 
which contributes 9.2 % of Indian marine fisheries (CMFRI, 2016). The 
main food for anchovy is plankton and it serves as a link between 
plankton and other tropic animals (Alizada et al., 2020). 

Tuticorin District of Tamil Nadu, India, borders the southern part of 
the Gulf of Mannar. This city is one of India's major fishing ports on the 
southeast coast. Tuticorin City has great interest in the investigation of 
pollutants due to consisting of many major industries, involved in the 
production of chemicals, petrochemicals, and plastics. The city gener-
ates wastewater of nearly 18 million liters per day which includes do-
mestic sewage and industrial effluents (Malarvannan and Balamurugan, 
2018). MPs contamination in the seawater and sediments is primarily 
linked to sewage release and various commercial activities such as 
fishing, development of the coastline, effluent from paper mills, agri-
culture activities and litter by tourism activities get transported to the 
beaches and cause plastic pollution (Katsumi et al., 2020; Jesuraja et al., 
2021; Khadanga et al., 2022). In this district 1, 81, 200 hector agricul-
ture activities associated with the utilization of 22,649 metric tons of 
fertilizers, 58 metric tons of dust, and 7920 l of liquid pesticides per year 
(DAC, 2021; TDC, 2024), and the arrival of 5.73 million tourist visitors 
(MTGI, 2014) which are the possible factors for MPs pollution. Earlier 
studies revealed the occurrence of MPs in the water, sediments, and 
biota sampled from the coastal environment of Tuticorin (Kumar et al., 
2018; Patterson et al., 2019; Sathish et al., 2020; Sathish and Patterson, 
2023). However, the occurrence of MPs in the edible fish Indian anchovy 
S. indicus has not been studied from Tuticorin coastal regions. Hence, the 
present study aimed to evaluate the gender-based occurrence and dis-
tribution of MPs in the different organs and tissues (gills, gut, and 
muscle) of S. indicus sampled from the Tuticorin coastal region. 

In the present study, a total of 25 individual fish S. indicus were 
sampled from the Threspuram fish landing center (80◦ 48′ 456′′ N - 78◦

09′ 485′′ E) of Tuticorin (Fig. S1a supplementary material). The collected 
fish were kept in a sterile sample canister and transported to the labo-
ratory for further examination. The sex and morphometry of sampled 
fish were measured and recorded as six females (mean length 12.6 cm 
and weight 15.0 g) and 19 males (mean length 12.8 cm and weight 16.5 
g) (Fig. S1b & c supplementary material). To keep down contamination 
and remove the debris, the fish were washed using double distilled 
water. Once this process was completed, the fishes were photographed 
using a Canon E300-6D camera for morphological characterization, and 
the taxonomical identification of fish was performed using the FishBase 
website (FishBase, 2023) and standard manual (Strauss and Bond, 
1990). 

The gut, gills, and muscles of fish from each gender were dissected in 
an aseptic condition, weighed, and transferred to a sterile glass 
container for further processing. Each organ was digested in 10 % KOH 
solution at the ratio of 1:10 (weight: volume) for 96 h at 60 ◦C (Karami 
et al., 2017), the lipid layer was removed using equal volume of 99.9 % 
ethanol (Dawson et al., 2020) under ultra-probe sonication, centrifuged 
at 8000 rpm for 10 min and the supernatant was filtered in a gridded 
cellulose nitrate membrane filter paper (pore size 0.22 μm) using vac-
uum filtration assembly. Further, the pellets were dissolved in a high- 
density solution of potassium chloride followed by centrifuging at 
8000 rpm for 10 min to separate the plastic particles in the supernatant 
and filtered in filter paper and the filtrate was stored separately in a pre- 
cleaned petri dish for further inspection. MPs in each filter paper were 
confirmed by hot needle test as prescribed earlier (Lusher et al., 2017), 
followed by being viewed and photographed under a stereo zoom mi-
croscope equipped with a camera (Olympus SZ61TR) at 40×

magnification. The morphometric properties (shape, size, and colour) of 
MPs were examined as per the earlier method (Hidalgo-Ruz et al., 2012). 
The MPs >100 μm size from each organ of male (gut: 22, gills: 19, and 
muscle: 10) and female (gut: 10, gills: 5, and muscle: 4) fish were 
randomly selected for polymer type identification in Fourier-transform 
infrared (FT-IR) spectroscopy (JASCO FTIR 4700, Japan) equipped 
with attenuated total reflectance mode (ATR) with a frequency range of 
4000 cm− 1 to 650 cm− 1 and coding 32 scans with 10 Hz, at a resolution 
of 4 cm− 1. All the acquired wave numbers of spectra were compared and 
confirmed based on the previous reports (Veerasingam et al., 2021; 
Smith, 2021; Liu et al., 2022). 

Quality control measures were taken to avoid airborne MPs during 
the sample collection and laboratory extraction and characterization of 
MPs. In brief, the sampled fish were immediately washed using reverse 
osmosis water and covered with cotton cloth. The lab manpower wore a 
100 % cotton lab coat and nitrile gloves to prevent contamination. All 
dissection tools, glassware, and containers were rinsed using ultrapure 
water before use. The microscope, vacuum filtration unit, and ultra- 
probe sonicator were cleaned using clean cotton cloth before and after 
use. The blank solution without any fish samples was prepared with the 
same procedure used for the extraction of MPs from fish samples to 
ensure MPs contamination free solutions throughout the analysis. 
Moreover, procedures were performed on the clean workbench placed in 
a separate contamination free room. The data obtained from all the 
parameters were expressed as mean ± SD. Significance variation in the 
abundance and size of MPs in the different organs of male and female 
fish were determined by one-way analysis of variance (ANOVA) fol-
lowed by Duncan's multiple range test using SPSS (20.0) software. 

In the present study, the result of the abundance of MPs indicates 
that the total number of MPs isolated from three different organs (gut, 
gill, and muscle) was 689 of which 510 and 179 MPs were extracted 
from male and female fish respectively. The overall average number of 
microplastic particles of the 25 individuals was 27.6 of all three organs. 
Further, overall abundance was significantly (P < 0.05) high in the gut 
followed by gills and muscle. The gender-wise distribution of MPs 
showed high in the female gut compared to the male gut and muscle. 
Moreover, female gills showed low MPs compared to male gills 
(Table 1). The overall lengthwise distribution of MPs showed a length 
range between 2.3 and 153.6 μm and the total length range was recorded 
in gut 9.6 to 133.1 μm, gills 4.4 to 76.3 μm, and muscle 5.2 to 74.0 μm. 
MPs extracted from the different organs of males showed the maximum 
particle size in the gut (153.6 μm), followed by gills (86.0 μm) and 
muscle (69.4 μm). In the case of females, the maximum length of the MPs 
was noticed in muscle (88.7 μm) followed by gut (68.0 μm), and gills 
(45.6 μm). In males, the mean length of the particle in muscle (53.0 μm) 
was significantly (P < 0.05) higher compared to the gut (38.1 μm), and 
gills (27.7 μm). While the mean length was significantly (P < 0.05) high 
in the muscle of females (42.0 μm) followed by the gut (26.6 μm), and 
gills (22.7 μm) of females. While, the overall mean length was found to 
be higher in the gut, gills, and muscles of males compared to MPs in 
female fish (Table 1). These results indicated that the female intestinal 
tract had more MPs due to their more feed consumption for their high 
energy requirement during the spawning seasons in the MPs contami-
nant environments (Foltz and Norden, 1977; Lambert and Dutil, 2000). 
Some fishes select MPs as their food because of the size and colour of the 
particles that resemble their prey like phytoplankton and zooplankton 
(Ory et al., 2017; Li et al., 2021). Likewise, Horton et al. (2018) and 
Senturk et al. (2023) reported higher MPs ingestion by female fishes 
(Rutilus rutilus and Syngnathus acus) compared to males. These condi-
tions can cause a false feeling of satiation (Rummel et al., 2016; Tanaka 
and Takada, 2016) which could be the main reason for MPs in the gut 
and it may cause starvation and physical damage. Besides, the MPs can 
be observed by the intestinal epithelial cells, followed by transfer to 
blood vessels and internal muscular tissues. The skin lesions alterations 
can possible entry of MPs into muscle (Jabeen et al., 2018; Barboza 
et al., 2020). Moreover, gills are being exposed directly to the 
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environmental matrices while doing respiration thus the MPs can 
passively enter their gill chambers and they will adhere to them (Porcino 
et al., 2022). Exposure of MPs can produce oxidative stress, tissue 
damage, behavioral changes, poor digestion, growth retardation, gen-
otoxicity, changes in immune gene expression, and reproduction in 
aquatic organisms (Bhuyan, 2022). In the present study, the occurrence 
of MPs with higher length in the gut indicates that the higher length of 
MPs ingested by the fishes trapped in the gut and small particles reached 
the muscle. Furthermore, the incidence of MPs with higher mean length 
in the muscle tissue compared to other organs indicates that the MPs 
reach the muscle up to a certain maximal length. Earlier studies 
observed that the MPs particle size ranged between 50 and 5000 μm, 50 
to 5000 μm, and 50–1000 μm frequencies in the gut, gills, and muscle of 

various marine fishes (Scomberomorus guttatus, Mullus barbatus, Alosa 
immaculate, Sardina pilchardus, Engraulis encrasicolus, Trachurus trachu-
rus, Osteogeneiosus militaris, Ethmalosa fimbriata, Pseudotolithus senegal-
ensis, and Galeoides decadactylus) respectively (Atamanalp et al., 2021; 
Hossain et al., 2023; Lopes et al., 2023; Pradit et al., 2023; Amponsah 
et al., 2024). Furthermore, earlier studies on the occurrence of MPs per 
individuals in the gut and gills of fishes such as Gobionellus occidentalis, 
Elops lacerta, Mugil bananesis, Chrysichthys nigrodigitalus, Cynoglossus 
senegalensis, Sarotherodon melanotheron, Galeoides decadactylus, Pseudo-
tolithus senegalensis, Ethmalosa fimbriata, and Apsilus fuscus (Amponsah 
et al., 2024) showed the lower numbers with higher length compared to 
the present study. Daniel et al. (2020) and Atamanalp et al. (2021) re-
ported a lower number of MPs per individuals with higher particles 

Table 1 
Abundance and lengthwise of MPs in the different organs of S. indicus.  

Abundance Gender Total No. of MPs Total Average No. of MPs/individual 

Gut Gills Muscle Gut Gills Muscles  

Male 223 190 97 510 11.7 ± 12.2 a 10.0 ± 7.5ab 5.1 ± 8.0b 

Female 98 49 32 179 16.3 ± 9.0a 8.2 ± 7.8ab 5.3 ± 4.7b 

Overall 321 239 129 689 12.8 ± 11.5a 9.6 ± 7.4ab 5.2 ± 7.2b 

Overall  27.60 ± 16.21   

Lengthwise distribution Gender Length of MPs (μm) Mean length (μm)  

Gut Gills Muscle Gut Gills Muscle 

Min. Max. Min. Max. Min. Max.  

Male 11.5 153.6 3.9 86.0 5.9 69.4 38.1 ± 54.8b 27.7 ± 38.9b 53.0 ± 47.2a 

Female 2.3 68.0 6.1 45.6 3.4 88.7 26.6 ± 25.9b 22.7 ± 26.9b 42.0 ± 48.2a 

Overall 9.6 133.1 4.4 76.3 5.2 74.0 34.6 ± 48.0b 26.5 ± 36.3b 50.3 ± 47.4a 

Overall 34.9 ± 45.0 

Mean ± SD; (n = 19 and n = 6 for males and females fish respectively). Mean values within the same column sharing the same superscript are not significantly different 
(P > 0.05). 

Fig. 1. Colour wise distribution of MPs in both male and female fish (S. indicus).  
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length range in the gill, viscera, muscle, and skin of R. kanagurta, Meg-
alaspis cordyla, Sardinella longiceps, Sardinella gibbosa, S. indicus, Dussu-
mieria acuta, Thryssa dussumieri, Sphyraena, obtusata, Anodontostoma 
chacunda, Mullus barbatus, and Alosa immaculata compared to the cur-
rent study. Nonetheless, a higher number of MPs in the edible tissues of 
Parexocoetus mento compared to the present study was recorded earlier 
(Abidin et al., 2021). 

In the current study, Fig. 1 shows the different colour of MPs 
recorded in different organs of the 25 fish individuals. Overall, the 
transparent particles were higher (268), followed by blue (212), black 
(49), pink (38) and brown (38). In this context, the dominant particle 
was noticed as transparent (194) followed by blue (163), black (39), 
brown (31), and red (27) in males. While, the transparent (74) particles 
were dominant in females, followed by blue (49), pink (12), yellow (11), 
and white (11). Amidst MPs isolated from both sexes, the maximum 
observed colour was transparent and blue. Further, the transparent 
colour was high in the gut (45 %) of males, followed by gills (40 %) and 
blue colour was highly observed in muscle (44 %). In females, trans-
parent MPs were high in gills (48 %), followed by gut (40 %) and muscle 
(37 %). Besides, the blue colour was the second dominant MPs in all 
organs of S. indicus compared to other colored MPs. This result indicated 
that some phytoplankton and zooplankton are transparent or white, 
hence, the fish might be recognized these transparent and white colour 
MPs as food sources that lead to false feeding. Likewise, the dominant 
level of transparent and white MPs was recorded earlier in nine 
commercially important pelagic marine fishes including S. indicus, R. 
kanagurta, M. cordyla, S. longiceps, S. gibbosa, D. acuta, T. dussumieri, S. 
obtusata, and A. chacunda (Daniel et al., 2020), which are highly edible 
for human consumers. Koongolla et al. (2020) found a greater amount of 
colorless and white MPs in the gastrointestinal tract of 12 fish species. 
Besides the higher selectivity of the blue colour and the movement by 
the ocean, the current and shape of the MPs are similar to their prey and 
it misleads maximum of the marine organism (Fernandez-Ojeda et al., 
2021; Scacco et al., 2022). Previous studies in fishes (Oreochromis mos-
sambicus, Terapon jarbua, Acanthurus dussumieri, and Mugil sp.,) have 
reported that blue colour dominance in gut, gills, and muscles (Guven 
et al., 2017; Kazour and Amara, 2020; Naidoo et al., 2020; Ghosh et al., 
2021). Many of the studies reported that mostly dark-colored MPs as like 
the food consumed by the fishes (worms and algae) (Bessa et al., 2018; 
Nelms et al., 2018). The specific colour preference of microplastics by 
the fish has been accredited to the eating habits of the fish groups 
(Pappoe et al., 2022). Hence, colour has been considered an essential 
parameter affecting the feeding habit and leads uptake of MPs by marine 
organisms (Abayomi et al., 2017). 

In the present study, five different shapes of MPs (fiber, fragment, 
pellet, foam, and film) were recorded in the different organs of the 25 
individual fishes. Overall, the fiber shape is the most dominant (481) in 
the fish S. indicus, followed by fragment (99), pellet (82), foam (19), and 
film (8). From this, a high number of all five shapes was recorded in the 
gut followed by gill and muscle. In the case of males, the dominant shape 
was fiber (368), followed by fragment (70), pellet (57), foam (10), and 
film (5). As in females, the highest shape was fiber (113), followed by 
fragment (29), pellet (25), foam (9), and film (3) (Fig.S2a &b; Fig.S3a 
supplementary material), which agrees with the previous study, fiber 
shaped MPs abundance was the most found dominant in digestive tracts 
of fishes (Zhang et al., 2020; Wu et al., 2020). This result suggests that 
the main sources of microfibers to the fish might be the fragments of 
fishing gears (Andrady, 2011) and domestic cloth washing discharge 
(Cesa et al., 2017; Li et al., 2022; Pradit et al., 2023). In the present 
study, fragments are the most found shape in all tested organs of 
S. indicus after the fiber this suggests that the fragments originated from 
macro plastics in the environment (Massos and Turner, 2017). Similarly, 
Sun et al. (2020) noticed that the fragment was the most noticed shape 
of MPs in the digestive tracts of fish Oreochromis niloticus. Also, a high 
level of fragments was recorded in the gut of fishes Decapterus maruadsi, 
Pampus argenteus, Collichthys lucidus, and Setipinna tenuifilis (Wu et al., 

2020). Furthermore, the overall occurrence of MPs was in the form of 
fiber and fragments in all studied organs and tissues (gut, gills, and 
muscle) studied fishes that denote fish might be exposed and consumed 
more levels of these MPs as false feeding due to their shapes resemble 
with phytoplankton and zooplankton, hence, these two types of MPs 
have a high relationship with all studied organs. Likewise, the dominant 
level of fibers and fragments in the gut, gills, and muscle of marine fishes 
such as Osteogeneiosus militaris, E. lacerta, C. nigrodigitalus, 
S. melanotheron, and G. decadactylus reported earlier (Pradit et al., 2023; 
Amponsah et al., 2024). 

The polymer nature identification of MPs can indicate their source of 
origin. In the present investigation, the ATR-FT-IR spectrum showed the 
presence of polystyrene (PS), nylon, polycarbonate (PC), polyethylene 
terephthalate (PET), and polyvinyl chloride (PVC) in the male fish gut. 
Whereas, the gut of female fish showed nylon, PET, and PVC. In this 
context, PET and nylons were the most commonly observed polymers in 
the gut, gills, and muscles of both male and female fishes (Table S1; Fig. 
S3b supplementary material), which indicates that these polymers might 
have fragmented from macro plastics sources like fishing gears, textiles, 
straws, films, personal care products, single use plastic cups, electronics 
waste, and other domestic wastes (Coyle et al., 2020) and get accumu-
lated in the fish by exposure and ingestion. Likewise, the presence of 
nylon, PS, and PET in the liver, gills, and digestive tract of fishes such as 
Taurulus baublis, Eleutheronema tetradactylum, Trichiurus lepturus have 
been recorded earlier (Piskuła and Astel, 2023; Hidayati et al., 2023). 
Also, the dominance of PET and nylon in the viscera and gills of fishes 
E. lacerta and Dicentrarchus labrax have been reported (Reinold et al., 
2021; Amponsah et al., 2024). 

There is limited research on the gender based comparison of MPs 
occurrence in fishes. The present investigation revealed a high occur-
rence of MPs in the gut followed by gills and muscles of S. indicus in both 
genders. However, female fish guts had a higher level of MPs than males, 
which suggests that female fish might consumed more MPs as false feed. 
Also, the muscles of both male and female fish were recorded with MPs 
with maximum mean length, which indicates the vulnerability of this 
edible fish species to MPs contamination that led to seafood safety. 
Transparent and blue in colored MPs with fiber and fragment shapes 
were dominant in both males and females, which might have frag-
mented from macro plastics like fishing gears, textiles, domestic waste, 
and other single use plastics with evidence of nylon, PS, PET, and PVC 
nature in spectral analysis. As limitations in this study, the seasonal 
based investigation is needed to understand the high incidence of MPs in 
the males and females of S. indicus. Besides, fish was sampled from the 
fish landing center, hence, there might be possibilities of MPs contam-
ination in the surface of fish at the time of harvesting to market. 
Therefore, sampled fish must be washed using pre-filtered double 
distilled or reverse osmosis water immediately after sampling to reduce 
the MPs contamination as better quality control. 
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