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CHAPTER 10
A Mathematical Model for Human Hearing Based on

Energy Consideration

MATHEMATICS IN ACTION:
EXPLORING MODELING, TRANSFORMS, PROBABILITY AND DATA ANALYSIS

1. INTRODUCTION

The purpose of this paper is to study how the ear perceives the sound waves and responds to
sound of different frequencies. Basically, we target on the three objectives: detailed study of the
sound wave propagation through auditory system, develop a mathematical model for describing
the perceived sound wave by human hearing and solve the model and detailed analysis on
mathematical theory of least square approximation for human hearing. Mainly, this study implicated
the sound wave propagation in hearing and applies the method of least square approximation to
a model for human hearing and is motivated by energy consideration.

1.2   History of hearing research
The evolution of hearing began quite a while back alongside the mammalian development.
Inception in development of warm blooded creatures originally found in the Triassic period
around 230 years ago, during this period, fostered a tympanic middle ear in all land vertebrates.
Advancement of Hearing is followed by the advancement in the ear structures that began in the
dryolestes (late Jurassic mammals) and proceeded to its current state. In particular, dryolestes
were the blend for familial uncoiled cochlea and neomorphic bony cochlear from which the ear
structures of marsupials and placentals are evolved. Currently, Therians (placental and marsupial
warm blooded creatures), cochlea curling evolves and high frequency hearing with completely
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looped cochlea seen first in cretaceous. These new changes are connected with the earliest
expansion of metatherians and eutherians in the Cretaceous, prompting incremental hearing in
Cenozoic and residing marsupials and placentals.

The history of hearing research can be traced back to ancient times, when philosophers and
physicians like Aristotle and Hippocrates speculated about the nature of hearing and the mechanisms
behind it. However, it wasn’t until the 16th and 17th centuries that scientists began to conduct
systematic experiments to study hearing. Modern hearing exploration began in the sixteenth
century; Andreas Vesalius named the two ossicles; malleus and incus while his scholar Philippus
Ingrassia coined the third ossicle, stapes in 1546. The cochlea was found by Bartholomeus
Eustachius in 1552 and the name ‘cochlea’ was given by Gabriel Falloppio in 1561. In the
seventeenth century, Italian researcher Giovanni Battista Porta found the cochlea, the twisted and
coiled structure in the inner ear that assumes to be the vital part in hearing. Thomas Willis
estimated in 1672 that each “tones” may stimulate various fibres of the nervous acoustics. In a
joint effort with the physicist Edme Mariotte, Joseph Guichard Duverney proposed theory of the
tonotopical association of the cochlea in 1683, which stated the encoding of acoustic data by
mechanical spectral analysis. In the 18th century, French physician Rene Laennec invented the
stethoscope, which allowed doctors to listen to sounds within the body, including sounds associated
with hearing. The academic doctrine of Aristotle’s ear implantation was refuted by Domenico
Cotugno in 1760.

In the 19th century, several significant discoveries were made in the field of hearing research. In
1800, Alessandro Volta discovered the electric battery, which led to the development of electrical
stimulation as a tool for studying the nervous system. This laid the foundation for the use of
electricity in hearing research. In the mid- 1800s, German physicist Hermann von Helmholtz
developed the theory of hearing that proposed that different frequencies of sound are detected by
different parts of the inner ear, thus ear detects sound through the movement of tiny hair cells
in the cochlea. Duverney’s hypothesis was, along with Georg Simon Ohm’s law on the approach
of sound waves with Fourier analysis, which served as the premise of Hermann Helmholtz’
renowned hypothesis of hearing in 1863. Owing to the absence of comprehensive information
about the nerve functions, still couldn’t find any reasonable thoughts on the acoustical data
conveyed to the brain by the acoustic nerve. The French researcher Edouard Leon Scott de
Martinville discovered a gadget called the phonautograph, which can record sound. Organ of sorti
was found by Alphonso Corti and was named after him by Albert von K¨olliker, and the functions
of vestibular organs were tested and showed through Flouren’s tests. Besides, the ground works
of auditory psycho-physics were done by Alfred M. Mayer and others.

In the 20th century, advances in technology allowed researchers to study hearing in even greater
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detail. In the early 1900s, researchers began to investigate the relationship between sound and the
nervous system. One of the major breakthroughs during this time was the discovery of the
cochlear amplifier by Georg von Beksey, which showed that the cochlea has an active mechanism
that amplifies sounds. American scientist Harvey Fletcher developed the first electronic hearing
aid in 1920, which used vacuum tube amplifiers to amplify sound. In the 1940s, researchers at
Bell Labs developed the first cochlear implant, a device that stimulates the auditory nerve directly
and can provide hearing to people with severe hearing loss. In the mid-20th century, the development
of new technologies such as the audiometer, which measures hearing sensitivity, and the cochlear
implant, which can restore hearing to those with severe hearing loss, revolutionized the field of
hearing research. Scientists also began to focus on the neural processes involved in hearing,
leading to significant advances in our understanding of how the brain processes sound. Recently,
research has concentrated on the genetic and molecular basis of hearing, similarly on the
improvement of new treatments for hearing impairment, including stem cell therapy and gene
therapy. Today, hearing research continues to be a rapidly evolving field with significant
implications for improving the lives of those with hearing impairments. Furthermore, the research
on various species had provided with enough information on the mechanism of hearing. The
queries on the function of auditory system in human can be cleared by choosing species which
allows the study of hearing mechanism easy when compared to human. Obviously, this methodology
of comparison has aided the auditory neuroscience well.

A few instances of fundamental examination in non-mammalian species that have steered the
field are:
1. Research on turtles, frogs, and birds found that their hair cells endure more effectively in vitro

than mammalian hair cells which laid foundation to the study of biophysics of hair cells. (
reviewed in Hudspeth 2014).

2. Comprehension in sound localization enhanced after the study conducted in owls.(Grothe et
al., 2018)

3. The importance of auditory feedback in speech production is evident from the study that the
degradation of birdsong is slowed down when their auditory feedback is intruded. (See Mooney,
2018).

4. The early exposure to noise spur up hearing loss with respect to increase in age, was revealed
from the study on mice. (Kujawa and Lieberman, 2019).

5. Restoration of hair cells in birds unfolded the possibility that hair cells can be regenerated in
mammals (reviews in Fettiplace, 2020).

6. To study the genetics of hearing impairment, mice and zebra fish are the best. (e.g., Vona
et al., 2)
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1.3 Research focus
In this paper, we develop a mathematical model for describing the distinguished sound waves by
human hearing based on energy consideration. The sound waves are entering to the outer ear and
move along the ear canal to the middle ear. The ear canal carries the waves to eardrum, causing
it to vibrate. These vibrations continue into the inner ear through inter connected apparatuses that
lead to the cochlea. The cochlea contains a liquid that is altered by the various sound waves. The
alterations are picked up by tiny hair cells. Furthermore, these hair cells are automatically connected
to the ion channels of distinct neurons in the brain, and these neurons are stimulated by the
Fourier transformation of the sound waves. That is, our ear is an effective transformer. Scientifically,
in the inner ear, the basilar membrane consist of distinct frequencies, the excessive frequencies
compose a massive vibration at the end; closest to the middle ear and moderate frequencies has
a extensive vibration along the faraway. Thus, the human auditory system can analyze the
frequencies and it will be same as to Fourier transformation.

In the ear, the movements of the tiny hairs cause to form the acoustic energy in the fluid of
cochlea. This energy is accurately found by the calculating the error between two respective
functions; periodic sound wave p(t) with period T and a complex sinusoidal sound wave q(t).
However, there is some sound wave q(t) and periodic sound wave p(t) produces the same sensation
of sound.

To solve the mathematical model, we use the least square approximation. The least squares model
for human hearing refers to a mathematical method for fitting a curve to data that aims to
minimize the sum of the squares of the error between the observed data and the corresponding
estimated curve. In the context of human hearing, this method is used to describe a model for
relationship between the physical stimulus of sound and the perceived loudness by a listener. The
goal of the least squares model is to find the best-fitting curve that accurately predicts the
subjective loudness of different sound stimuli, and this information can be used in various
applications such as sound engineering and psycho-acoustics.

1.4 Literature Review
Helmholtz (1954) accomplished an incredible work on the anatomy of the ear. Helmholtz proposed
a resonance theory of hearing in 1863. The cochlear partition was considered as a series of tuned
resonators by this theory. Here, high tones situated at the base while low tones at the peak. While
responding to a single tone, the cochlear partition would vibrate just in the confined locale which
can resonate that specific tone. It is similar to the functioning of a piano, with damper raised,
whose strings will vibrate specifically to single acoustic tones. This resonance theory must be
modified with the arrival of von Bekesy’s perceptions on the movement of the cochlear partition.
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The experiments done and perceptions made on human corpses, animals, and models which
started in 1928 by G. von Bekesy’s laid the foundation  to our understanding on the human ear
mechanism. And it helped him bag a Nobel Prize in 1961. Von Bekesy’s formulated a method
for estimating the displacement of the cochlear partition with respect to a sinusoidal tone in 1947.
The cochleae of animals and human corpses were examined by Von Bekesy’s under a microscope
with the help of stroboscopic illumination. Fig.3.1 is an example of von Bekesy’s test results from
a human cochlea. He then noticed the motion of waves on the basilar membrane; waves which
move up the cochlea with rising amplitude and lower wavelength. He found that these waves at
some positions are reaching a maximum level and afterward fall away quickly. The area of
maximum displacement differs in frequency as said in resonance theory. The waves with high
frequencies are only moving a small distance whereas waves with low frequencies move up to
the helicotrema.

Von Bekesy’s observations triggered Peterson and Bogert to design a long- wave model in 1950.
They believed that waves spread in the cochlea were long compared to the cross-sectional
diameter and made a resemblance to waves on an electrical transmission line. They decided the
firmness of the basilar film from They used von Bekesy’s test-hair measurements to estimate the
firmness of the basilar membrane and utilized the fluid mass inside the cochlear channel as the
partition mass. They expected components of the basilar membrane to have no coupling in the
longitudinal direction. They found a numerical solution for the movement of basilar membrane
by ignoring fluid viscosity and partition damping.

Ranke (1950) assumed that waves in the cochlea were small near to the characteristic place
whereas long in the basal area.  He formulated a short- wave model in which he expected the
wavelength to be small all over and the fluid is inviscid and impossible to compress. He then
compared his outcomes with those of von Bekesy.

Siebert (1974) designed a two-dimensional model expecting the fluid to be inviscid and impossible
to compress. His design was in the form of an integral equation. Later, he connected his model
to the long wave model of Zwislocki (1965) and the short-wave model of Ranke (1950). Prior
to tracking down answers for his model, Siebert made a short-wave approximation.

Alkahby et al proposed two models for the basilar membrane, particularly mathematical model,
in 1999. One model depicted basilar membrane in a shape of ring whiles the other as a rectangular
region. The results thus obtained stipulated the significance of curvature of basilar membrane in
hearing mechanism.

The round window membrane vibrates with an opposite phase to acoustic vibrations entering the
cochlea through the stapes at the oval window, another opening of the cochlea to the middle ear.
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Through this chapter, we precisely explained the basic history and researching methodologies in
human hearing mechanism and briefly gave an explanation of the purpose this paper with its aims
and objectives. And also, we take a short analyzing on literature review related to the field of
technological and physiological aspects of the sound mechanism and illustrated the contributions
on study of sound mechanisms.

2. SOUND CONDUCTION MECHANISM

We precisely illustrate about conduction mechanism of auditory system with the amplifying main
roles of outer ear and middle ear. The Conduction is the arrival of sound waves from an external
source to the outer ear which passes through the middle ear before reaching the inner ear.

Outer ear: The outer ear plays a major role in sound conduction by transmitting sound waves
from outside the ear to the tympanic membrane. The pinna helps in collecting and passing the
sound waves to the ear canal. The angle in which pinna collects the sound, it helps the individual
to locate the source. But it is only possible for a sound wave having higher frequency, because
of the head size and the wavelength of wave, and in middle and lower frequencies, sound shadow
projected by head itself and time taken for a wave to reach ear helps in sound localization

Fig 2.1: A cross section of the human auditory system. (Source: Encyclopedia Britannica)



132

MATHEMATICS IN ACTION:
EXPLORING MODELING, TRANSFORMS, PROBABILITY AND DATA ANALYSIS

respectively. The 4 cm long auditory canal has hairs and ear wax in it which acts as a disinfectant.
The external layer of the tympanic membrane itself is formed of skin same as that of the auditory
canal.

The skin in body of organisms has the ability of restoration. The skin of auditory canal falls off
into the wax of external ear. This is why we shouldn’t use cotton buds to clean the ear, because
it affects hearing. The curve in ear canal prevents entry of external particles to tympanic membrane.
The tympanic membrane is the integral part in sound transduction which has a shape of loudspeaker
cone. The tympanic membrane is called eardrum by many, but actually, middle ear is eardrum
while tympanic membrane is drum skin.

Middle ear: The air-occupied space that is linked with Eustachian tube is called middle ear. The
middle ear contains three small bones namely - malleus, incus and stapes which carries sound
from tympanum to inner ear. Tympanic membrane serves as the outer boundary of the middle ear
while cochlea acts as inner wall.

The middle ear enfolds jugular bulb, vein that controls cerebral blood flow. Eustachian tube
opens to the middle ear and mastoid air cells at front and posterior ends respectively. Muscle
contraction helps in balancing the pressure in the middle ear and nose well. The malleus has a
shape of club where its top lies in middle ear cavity above tympanum. The cone shaped incus
has its base at the head of the malleus. The bend at its tip connects to the stapes. The stapes is
third bone which links the middle and inner ear. Its foot plate enfolds the opening to the inner
ear, named oval window.

Generally, in this chapter we analyzed the mechanism of sound conduction. We obtained detailed
information about the major roles of outer ear and middle ear in the conduction process.

3. SOUND TRANSDUCTION MECHANISM

We illustrate about transduction mechanism of auditory system with the amplifying main role of
inner ear. The transduction is the converting of sound waves into electrical signals and they
transmit to the brain.

Inner ear: In the inner ear, snail-shell shaped cochlea play major role in sound transduction, i.e.,
it is core of the interpretation of sound waves. The hearing organ is called membranous labyrinth
enveloped by fluid-perilymph. The cochlea consists of 0.2 milliliter volume; where located millions
of hair cells and nerve fibres. The hair cells are also named stereocilia. The surface of sensory
cells in the stereocilia consists of microscopic, hair like protrusions, and they are the sensory
receptors of auditory and vestibular systems of the ear. The hair cells transduce vibrations into
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nerve signals and then abundant nerve fibres that act as a channel for signal transmission.

Fig 3.1: The cochlea is a bony tube, filled with perilymph in which floats the
endolymph filled membranous labyrinth (Hallowell and Silverman, 19, 1970)

The uncoiled portion of cochlea is a bony tube with round and oval windows, so there is an
association between membranous labyrinth and vestibular labyrinth. The Vibrations in the stapes
foot plate causes to vibrate the fluid-perilymph within the cochlea. Consequently, it causes to
opening of oval window and round window. The membranous labyrinth consists of three
components; the outermost two components are scala vestibuli and it is linked to the oval window
and the other component scala tympani are linked to round window. The helicotrema is the
minute slit that link the perilymph filled portion at their tip, In the case of frequencies below the
audible range it role as pressure equalizing mechanism. Moreover, they link to the brain by a
passage called perilymphatic aqueduct. The membranous labyrinth filled by a fluid endolymph
and is also called cochlear duct. They also separated one side by reissner’s membrane from scala
vestibuli and other side by the basilar membrane from scala tympani. The basilar membrane
consists of large number of nerve fibres, and it is trembled by the vibrations of the hair cells with
the sound waves then the transduction of vibrations with the audible range to a nerve signal. The
basilar membrane reacts as vibrantly to greater frequencies at the lowest end of oval window and
to gradually smaller frequencies as forward movement to highest end. The basilar membrane
reacts vibrantly to the lower frequencies at the highest end. The impulses are formed as wave at
the oval window and are channeled to the basilar membrane, and those nerve fibres are vibrating
at gradually provide the transmission of information to brain. As a result we sensed the sound.
Then the cochlea is a notable well regulated frequency analyzer.
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Figure 3.2: A cross section of cochlea showing details of membranous labyrinth with
organ of corti. (Source: Encyclopedia Britannica)

Figure 3.3: A surface view of the hair cells in the cochlea (Source: sciencephoto library)
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Anatomically, the human auditory system has the mechanisms of sound conduction and sound
transduction. In the sound conduction mechanism, there are two basic parts; the pinna and ear
canal within the outer ear and tympanic membrane within the middle ear. The Eustachian tube
attached to nose from the air space of middle ear, then also linked to the ossicular chain, consists
of three tiny bones; the malleus incus and stapes. In the cochlea, transduce the vibrations and
channeled to the perilymph along the ossicular chain into nervous signals hence pass to the brain
then it is sensed as sound.

4. HEARING MECHANISM

Here deals with the discussion about; how the auditory system performs in the mechanism of
hearing within the audible range, and also illustrate the contribution of outer, middle and inner
ears.

Outer and Middle ears: Let’s talk about the conduction mechanism the human being can
hearing the sounds within the range of 20 Hz to 20000 Hz. The ear cans extreme sensitive in the
range of 128 Hz to 4000 Hz. when the increasing of age the auditory and sensitivity of humans
are decreasing. The human head serve as a natural hindrance between those two sided ears. The
ear can feel extreme stimulus, when the sound source closest to it. Those sound waves are
varying with change of time and it promote to localizing of sound for hearing mechanism. The
wrinkled shape of pinna helps to seize the more intense frequencies sound and then passes to ear
canal. The pinna can protect the ear from the arrival of some high frequencies sound waves; as
a result it helps to recognize the source of sound. The ear along this sounds serve as resonating
tube so it causes to more intense vibrations of sound. The ear has an important role in the
balancing of human body by equalizing of pressure. In the ear, Eustachian tube acts as pressure
equalizer. The sound signals are amplified by the outer and middle ears. The collected sound
signals pass to the ear drum and then to ossicular chains within the middle ear. The ear drum act
as a hydraulic amplifier. The ossicular chain also helps to boosting of sound signals.

Inner ear: The approaching vibrations are transducing to nerve signals by the inner ear. Nerve
fibres of the basilar membrane start to vibrate and it causes to mobility of molecules in the fluid
perilymph. It produces an acousting signals and transport to brain. Nerve fibres can vibrate under
the range of 200 Hz. The frequency range above kHz cannot audible clearly. The basilar membrane
consists of distinct levels of frequencies on different ends. The motions of ossicular chain causes
to collect the vibrations by the oval window and it transport to basilar membrane and all frequencies
attain their respective position of vibration; and there diminishes their movements. The hair cells
of cochlea have separation by tunnel of corti into one row of inner hair cells and three rows of
outer hair cells. We can sense the nerve signals as sound after the initiation of inner hair cells.
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The inner hair cells are sensitive towards higher sound frequencies and outer hair cells are
sensitive towards the lower frequencies. The amplified sounds are transmitting to inner hair cell
from outer hair cells. Then the inner hair cells are initiated to the nerve signals. The human ear
is extreme sensitive to sound in the range of 3000 Hz to 4000 Hz. The high stimulus production
within this range of frequency, it causes to damage of outer hair cells. As a result, the inner hair
cells cannot sense the lower frequencies and it also reason to the hearing loss at slight frequencies.
But still can hear the sounds of high frequency. This phenomenon is called as loudness recruitment.

4.1 Summary

The sound waves coming to ear are collected and passed into tympanic membrane by pinna in
outer ear. It creates vibrations of air particles which is then transmitted to tympanum, eventually
tympanum starts to vibrate. The vibrations in tympanic membrane prompt the three small bones
in ear to vibrate. The third small bone which is near to the inner ear, stapes causes movement
in oval window. The oval window poses a smaller surface compared to tympanic membrane, so
the vibrations in the oval window are intensified around twenty times. The movement in oval
window induces the perilymph in the cochlea to vibrate. Since the perilymph is an incompressible
fluid, it creates motion in round window. Atmospheric air and air in middle air comes in contact
through Eustachian tube and pharynx. There is a membrane in between upper canal and cochlea.
This membrane moves according to vibrations in perilymph. This push endolymph to and fro
which in turn led to the vibration of basilar membrane, but the tectorial membrane remains static.
Subsequently, the hair  cells between tectorial and basilar membrane and enables auditory nerve
in transmission of these impulses to cerebrum, the largest part of brain. The basilar membrane
near round window vibrates more with the arrival of higher frequency sound waves whereas the
basilar membrane near to the tip of cochlea when a lower frequency wave comes. The brain is
thus able to recognize the frequency of sound wave from where it is arrived from.

Range of Hearing: Normally, the human ear can respond to sound with the frequency of 40 to
16 000 Hz. Animals like dogs and bats can hear very high frequency sounds which our which
our ears cannot detect. As we grow older, we lose the ability to hear higher pitched sounds. The
dB (decibel) is the measured unit of loudness. As sound that can barely be heard, is given a
decibel rating of zero. The whispering sound is the range of 30dB and normal communication
around the 60 dB. The high frequency noises above 120 dB can harm the ears.

This is because they exert a great pressure on the tympanic membrane.
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5. LEAST SQUARE MODELLING IN HUMAN HEARING MECHANISM

We apply the least squares approximation method in the modelling of human hearing, and it is
motivated by energy consideration. Linear algebra techniques are used to approximate a function
over an interval by a linear combination of sine and cosine terms.

5.1 Introduction
Let’s start with a short analysis about the idea of sound and human hearing. By showing in the
figure 5.1, it is the schematic diagram of the ear and its three basic parts: the outer ear, middle
ear and inner ear. The sound waves are entering to the outer ear where they are diverted to the
eardrum, make happen it to vibrate. Three small bones in the middle ear precisely connect to the
ear drum with the snail- shaped cochlea inside the inner ear. These bones transmit the vibrations
of the ear drum to a fluid inside the cochlea. The cochlea contains millions of tiny hairs that
vibrate with the fluid. As a result the area near to entrance of the cochlea is stimulated by high
frequencies, and the area near to the top of the cochlea is stimulated by low frequencies. The
fluctuation of these hairs actuates nerve cells that convey signals along different neural pathways
to the brain, where the signals are decoded as sound.

Fig 5.1
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5.2 Mathematical Model Formulation
The sound waves are the consequence of deviation in air pressure over the time. For the auditory
system, the most simplistic type of sound wave is a sinusoidal variation in the air pressure. This
kind of sound wave activates the hairs in the cochlea hence that nerve impulses contribute to a
single neural pathway (figure 5.2). A sinusoidal sound wave can be characterized by a function
of time.

q(t) = A0 + A sin( ωt – δ )                                              (1)

Fig 5.2

Here, q(t) is the atmospheric pressure at the eardrum, A0 is the normal atmospheric pressure,  A
is the maximum deviation of pressure from the normal atmospheric pressure, w/2p is the frequency
of the wave in cycles per unit time and d is the phase angle of the wave. To be interpreted as
sound, such sinusoidal waves should have frequencies under a particular range. For human
beings this range is approximately 20 Hz to 20,000 Hz. The frequencies beyond this range will
not stimulate the hairs inside the cochlea enough to compose the nerve signals.

To the practicable intensity of perfection, the ear is a linear system. This points to that if a
complex sound wave is a finite sum of sinusoidal components of at variance amplitudes,
frequencies and phase angles, claim;

q(t)= A0+A1sin(ω1t− 1ߜ) + A2sin(ω2t− 2ߜ)+ ..............+ Ansin(ωnt− ߜn)                     (2) 
the response of the ear is made up of nerve impulses that are activated by the individual components,
and those go through the same neural pathways (Fig 5.3).

Now, we consider some periodic sound wave p(t) with periodic T. Specifically, it is not a finite
sum of sinusoidal waves. If we check out the response of the ear to such a periodic wave, we
observe that it is the similar as the response to certain number of wave that is the complex of
sinusoidal waves. Hence, there is few sound wave q(t) as given by Equation (2), that produces
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Fig 5.3

the similar reaction as p(t), even if p(t) and q(t) are different functions of time. [i.e., p(t)  p
(t + T)].

Here, we want to find out the frequencies, amplitudes and phase angles of the sinusoidal components
of q(t). We can logical to expect that q(t) and p(t) have the same period T, since q(t) result in
the same response as the periodic wave p(t), This preferred that the each sinusoidal term in q(t)
have period T. As a result, the frequencies of the sinusoidal components should be integer
multiple of the  frequency 1/T of the function p(t).Then, the  in Equation(2) need to be of the
form;  = 2k/T,  k = 1, 2, .... whereas the ear cannot recognize sinusoidal waves with
frequencies more than 20,000 Hz, if we get values higher than 20,000 Hz, we may exclude these
values of k for which /2 = k/T. Consequently, q(t) is of the form;

q(t)= A0+A1sin( 2ݐߨ
ܶ

 - δ1)  + A2sin(4ݐߨ
ܶ
− δ2)+ ..............+ Ansin(2݊ݐߨ

ܶ
- δn)  (3) 

Here, the greatest integer n such that n/T doesn’t exceed 20,000.

Afterwards we want to concentrate on the values of the amplitudes A0, A1,…, An and Phase angles

1, 2,…,n that are show in Equation (3). The auditory system “picks” these values according
to a certain criterion such that q(t) leads to the same response as p(t).

For the examination of this criterion, we assume that, e(t) = p(t) “ q(t). If we suppose that q(t)
is approximated to p(t), then the error of this approximation is denoted as e(t). The ear is unable
to detect the errors. with reference to e(t), if the quantity is least as probable, then we can
establish the amplitude and phase angles based on those criteria.

     2 2

0 0

                                  (4)
T T

e t dt p t q t dt         

We consider, the physiological aspects of the human auditory system, which consist of a fluid
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filled portion with millions of tiny hairs named cochlea within the inner ear. When the sound
waves enter the cochlea, the hair cells start to vibrate and also cause the movement of molecules
in the fluid there. Consequently, there generate an energy called acoustic energy. We note this
energy is proportional to the error wave e(t). That is, acoustic energy is accurately calculated
based on the difference in error between the observed sound wave p(t) and the corresponding
estimated sound wave q(t),which in the case of the human ear, can distinguish between those
waves. When the two waves provide the similar perception of sound, then there is the energy is
least as possible. Algebraically, consider the vector space C [0,T] and the continuous functions
on the interval [0, T], then the function p(t) in (4) is the least squares approximation by the q(t).
The integral in (4) is called the least squares error, or the mean squares error, of the approximation.

5.3 General Theory
We develop the mathematical theory of the least squares approximation for a function with the
linear combination of sinusoidal functions. Let f(t) be a given continuous function defined over
an interval of the t-axis. We first consider the case when the interval is [0, T] for arbitrary T.
Analogous to Eq (3) with T= 2, we desire to approximate f(t) by a function of the form;

   0 1 1 2 2g(t)   2  ( )n nA A sin t δ A sin t δ A sinn t δ      

For some fixed integer n. Since sin k (t – ) is expressible as a linear combination of sin kt and
cos kt, we can write g(t) in the alternate form;

0 1 2 1 2g(t)   2 .. 2 ..   (5)n n = a a cost a cos t a cosnt b sint b sin t b sinnt       

Such a function is called a trigonometric polynomial of order n. Our problem is to find values
of a0, a1, ...., an, b1, ..., bn such that g(t) is the least squares approximation to f(t) on the interval
[0, 2]. That is, the coefficients are to be chosen so that the least squares error is as least as
possible.

   
2

2

0

                                                        (6)
π

f t g t dt   

Since the integral in Eq.(6) is a function of the 2n+1 coefficients a0, a1, ..., an, b1, ..., bn it is
possible to use calculus to find the minimum value of the least squares error and the corresponding
values of these 2n+1 coefficients. However, an approach using Linear Algebra will give us
greater insight into the nature of the approximation process. Moreover, the method we discuss
can be applied to many least square problems besides those in this thesis. We will need the
following three facts:
1. The function f(t) we are attempting to approximate may be viewed as a vector in the vector

space  C [0, 2] consist of continuous functions in the interval of [0, 2].
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2. Since the approximating function g(t) is a linear combination of 1, cos t, …… cos nt, sin t ...,
sin nt, we may view g(t) as a vector in the subspace W of C [0, 2] spanned by these 2n+1
vectors.

3. Since

   

   
   

2
2

0

2

0

is the distance between f  t  and g t  in the norm generated by th

                                             

e inner prod

  (7)

,                              

uc
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.

  

π

π

f g f t g t dt

u v u t v t dt
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2

2

0

                                    (8)

                                             

the least squares err

                              

o

 

r

 (9)
π

f t g t dt   
Represents the square of the distance ||f – g||.

In light of these remarks, the problem of finding a trigonometric polynomial g(t) which minimizes
the least squares error given by (9) is equivalent to the problem of finding a vector g in the
subspace W which minimizes the distance ||f – g||. The latter problem can be solved by use of
the following theorem from the theory of inner product spaces (Fig 5.4).

THEOREM 1

Let f be vector belongs to an inner product space and let W be a finite dimensional subspace.
Then the vector g in W which minimizes the distance ||f – g|| is projwf, the orthogonal projection
of onto W. If the vectors go,g1....gm forms an orthonormal basis for W,

0 0 1 1, , (10) ,  w m mProj f f g g f g g f g g      

Fig 5.4

To apply this theorem, we must first find an orthonormal basis for the subspace W spanned by
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the 2n+1 vectors 1, cos t, cos 2t,..., cos nt, sint, sin 2t,..., sin nt. A direct calculation verifies that
these 2n+1 vectors are orthogonal relative to the inner product. Consequently, we need only
divide each one of these vectors by its length to generate an orthonormal basis for W. The result
is;

0 1 1 2

0 1 1

2

The orthogonal projection of  f  onto W is giv

1 1 1 1 1, ,  , , 
2

1 1 1 1, ,  , ,
2

1 ,               

en by

 

n n n

w n n

n

g g cost g cosnt g sinnt g sinnt
π π π π π

proj f f g f g cost f g cosnt f g sint
π π π π

f g sinnt
π





     

          

 

 

 

2

0 0
0

2

0
2

0

      (11)

1 12 ,
2

1 1         , ( )                    1, 2,3, ,       

1 1 ,          

To simplify our notation, let us define

 1, 2

π

π

k k

π

k n k

a f g f t dt
ππ

a f g f t cosktdt k n
ππ

        b f g f t sinktdt k
ππ

   

    

   







 
0 1 1

Equation 11  can then be written as

In summary, we have the following resul

,3, ,

 
1     
2

t :

w n n

n

proj f a a cost a cosnt b sint b sinnt



    

THEOREM 2

If f(t) is continuous on [0,2], the trigonometric function g(t) of the form:

 

   

 

0 1 1
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has coefficients

1 ,                                                   

Which minimizes the least squares e
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2

0

1 ,                                                       1, 2,3, ,
π

kb f t sinktdt k n
π

  

If the function f(t) is defined on the interval [0, T] in place of [0, 2], a change of dimensions
will given the following result.

THEOREM 3

If f(t) is continuous on [0, T] , then the trigonometric function g(t) of the form:

 

   

0 1 1

2

0

0

This minimizes the least sq

1 2 2 2 2 cos cos ( )
2

 has coefficients

2 2( )cos  

uares error

                        

n n

T
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πt nπt πt nπtg t a a a b sin b sin
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2 2sin                                   1, 2,3 ,
T

k

k n

kπtb f t dt k n
T T

 

    
 

5.3 Least Square Approximation

Consider a sound wave p(t) with a basic frequency of 5000 Hz which have a saw-tooth pattern.
Suppose units have been pick out so that the normal atmospheric pressure is at the zero level,
and the maximum deviation of amplitude of the wave is A. The fundamental period of the wave
is T=1/5000 = 0.0002 seconds. From t=0 to t=T, the function p(t) has the equation;

 

hen by the theorem 3, given the followi

2

T n

2

g :

A Tp t t
T

   
 

Fig 5.5
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Let’s evaluate, how the sound wave p(t) is identified by the human ear. We observe that 4/T
20,000 Hz, in this case we want only move up to k=4 in the above expressions. The least squares
approximation to p(t) is then,

  2 2 1 4 1 6 1 8 
2 3 4

A π πt πt πtq t sin sin sin sin
π T T T T
                           

The four sinusoidal components have frequencies of 5,000, 10,000, 15,000 and 20,000 Hz,
respectively. In Fig 5.6, we represent the p(t) and q(t) over one period. Here, we obtain the q(t)
is not an accurate point-by-point approximation to p(t). However, to the human ear this two
waves p(t) and q(t) produce the same sensation of sound.

Obviously, if the number of components in the approximating trigonometric polynomial increases,
then the least squares approximation enhances the result. In more advanced courses, it is shown
that the least squares error tends to zero as n approaches infinity. For a function f(t) defined over
the interval [0, 2], this limiting approximation is denoted by

Fig 5.6
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  0
1

1 (   )                                   (12)
2 k k

k

f t a a coskt b sinkt




  
and is called the Fourier series of f(t) on the interval [0, 2]. The equality in this equation denotes
equality between the two sides of the equation considered as vectors in C [0, 2]. To be precise,
Eq. (12) denotes the fact that the quantity tends to zero as n tends to infinity. Even if the Fourier
series of f(t) converges to f(t) for each value of t.
2

2
0

10

1[ ( ) ( )] 
2

π n

k k
k

f t a a coskt b sinkt dt


  

Finally, we formulated a least square model for describing the perceived sound wave by human
hearing. The least squares model is a mathematical model in which we applied the general theory
of least square approximation to distinguish sound waves.

6. CONCLUSION

The mathematical modelling formulation for human hearing is one of the great innovations to the
future world. Here, we take the first move towards the mathematical model formulation for
human hearing.

Firstly, we analyzed the evolution of human hearing, history and physiological studies related to
the hearing mechanism of human beings. The second chapter also gave the detailed explanation
of sound conduction through the outer ear and middle ear as part of hearing mechanism. Through
the third chapter, we explained the transduction of sound waves in the inner ear for hearing
mechanism. Among the fourth chapter, we precisely illustrate about the great part of outer ear,
middle ear and inner ear in human auditory system.

Finally, we formulated the mathematical model for human hearing. The model was analyzed and
solved by the general theory of least square approximation and is motivated by energy consideration.
That is for analysing, we take the periodic wave p(t) with period T, as expansion of Fourier series
and is approximated to the complex sound wave q(t). We approach the linear algebraic theory for
the least square approximation, finally we got the response of the ear to p (t) is the same as the
response of the ear to q (t). That is, these two waves produce the same sensation of sound.

The limitations encountered in this paper are non-availability of resource materials; proper power
supply and lack of experimental material such as human ear, wave meter and digital multimeter
can measure the  frequency. and digital multimeter can measure the  frequency.
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