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Preface to the Dover Edition

Concepts of Modern Math. ics began as an extramural course—
nowadays we would say ‘continuing education’—taught at Warwick
University in 1971. Several dozen citizens of Coventry. ranging
from school students to a retired automotive engineer, gathered for
two hours every week to grapple with what was then called ‘Modern
Mathematics’in Britain and ‘New Math’in the United States. What
was new about this particular style of mathematics was not its
content—most of it was at least a century old—but the fact that it
was being uught in schools. The abstract, general style of mathe-
matical exposition favoured at research level by Nicolas Bourbaki—
a pseudonymous group of mostly French mathematicians—was
being transferred into the classroom.

This remarkable educational experiment remains controversial.
Many see it as an unmitigated disaster. My own view is that its
proponents confused logical issues about the nature of mathematics
with psychological issues about how it should best be taught. The
movement had some major advantages—for example it made a
serious attempt to bring school mathematics out of the dark ages—
and some serious flaws, such as the inclusion of abstract concepts
that had no contact with anything that might interest the average
school student. There was little communication between the

ionalists who fa d introducing the new syllabus and the
mathematicians who knew what the material in it was actually good
for, and this led to some strange decisions.

Teachers and parents certainly found the changes very confusing,
whence the course. Its aim was not to teach the new school
mat ortod the issues involved in its i d
was to explain why the underlying abstract point of view had guned
currency among research mathematicians, and to examine how it
opened up entirely new realms of mathematical thought. At its best,
abstract mathematics is deep, powerful, and mind-expanding. Atits
worst, it is superficial, obscure, and mind-numbing. The course
aimed to promote the best and to ignore the worst.

‘New Math’ is no longer a major educational issue. Its worst
excesses have been excised from the cumculum, and its positive
contributions have been assimilated. Today’s issues are different—
the role of calculators and computers; the steady seepage of Western
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children into law, accountancy, medicine, advertising, and the
consequent damage bemg done to the Europem and Amencan
science base; the balance b p al and the ical skills;
the importance or not of calculus . . .

Despite all these changes, the central message of Concepts of
Modern Mathematics remains just as valid as it was twenty-plus
years ago. Mathematics is a far richer area of human endeavour
than most people imagine. It is versatile, powerful, and enjoyable.
Even its wildest flights of fancy have important applications. This
was brought home to me recently by Len Reynolds, an engineer who
works at the Spring Research and Manufacturers® Association in
Sheffield. Len and I are currently involved in a joint project, funded
by the Department of Trade and Industry, to apply modern
techmqm of data analysis (‘chaos theory’) to the quality control of
springs.

Yes, springs. Bedsprings, automobile valve springs, truck suspen-
sions, and the little springs that you find inside ballpoint pens.
What's chaotic about a spring? Almost everything! In particular,
the spacing of the coils, if you measure it accurately enough.
Variability of the wire translates into variable spacing of the coils,
and this can cause spring manufacturers all kinds of trouble. But
conventional statistics doesnt capture the qualitative type of
variability that causes problerm Chaos theory, designed to extract
patterns from app q of data, does.

Importing new mathematical techniques into industry isn‘t
straightforward. The concepts needed were not in the syllabus of the
typical engineer a decade or two ago; indeed most of them are not in
the syllabus now. Len asked me to recommend a simple, broad
introduction to such items as set-theoretic notation, functions, and
multidimensional geometry. 1 told him ‘Concepts of Modern
Mathematics—except it’s out of print,’ and offered to send him a
photocopy. He managed to locate a secondhand copy, telling me in
passing that his supplier had reported a substantial demand for the
book. Well, to be more accurate, they'd said that as soon as a copy
came in, it promptly sold. I realised that maybe it would be worth
getting the book back into print again.

The next step was then obvious. I own a vast collection of Dover
reprints of classics that range from Arthur Cayley's Elliptic
Functions to Jacques Hadamard’s The Psychology of Invention in
the Mathematical Field, and 1 asked Dover to consider giving my
own humble brainchild the same treatment. I am delighted that
Dover Publications has made it possible for the first book that I ever
wrote for a non-specialist audience again to see the light of day. And
I am inced that its message remains as fresh as it was two
decades ago.

Ian Stewart
Coventry, March 1994



Preface to the First Edition

Once upon a time it was possible for parents to help children with
their homework. The ‘modernization’ of school mathematics has
made this less possible: at the very least the parent has to learn a
lot of new material, most of which seems strange and uncom-
fortable. A teacher friend of mine reports that his class has been
clamouring to be taught ‘real mathematics like Mum and Dad
used to do’, which sheds an interesting sidelight on where
children get their opinions. Many teachers, too, find the new style
of mathematics difficult to grasp hold of.

This is a pity. The aim of ‘modern maths’ was to encourage
understanding of mathematics instead of blind manipulation of
symbols. The true mathematician is not a juggler of numbers, but
a juggler of concepts.

This book attempts to combat these feelings of unease. One is
always uncomfortable when faced with the unknown, and the best
way to lose one’s fears is to see how it works, what it does, and
why it does it, so that one becomes accustomed to its nature and no
longer feels uncomfortable. This will not be a ‘handbook of
modern mathematics’, but a description of the aims, methods,
problems, and applications of modern mathematics: the day-to-
day toolkit of the working mathematician.

1 would prefer not to have assumed that the reader knows any
mathematics, but here I have had to compromise. He will need
a smattering of algebra, geometry and frigonometry; and the
idea of a graph. I have tried to avoid calculus; it does appear
occasionally but is never essential to the exposition.

Most important of all is a mind receptive to new ideas and a
genuine desire to understand. Mathematics is not an easy sub-
ject — no worthwhile subject is easy - but it is a rewarding one. It
is a part of our culture, and no person can count himself truly
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educated without some idea of what it is and does. It is, above all,
ahuman subject, with its own triumphs and disasters, frustrations
and insights,

Gooa. Tryit.
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Chapter 1 Mathematics in General

‘It is difficult to give an idea of the vast
extent of modern mathematics'
- A. Cayley, in an address of 1883.

From the sudden conversion of our schools to ‘modern mathe-
matics’ one might gain the impression that mathematics has lost
control of its senses, thrown out all of its traditional ideas, and
replaced them by weird and whimsical creations of no possible use
to anyone.,

This is not entirely an accurate picture. At a conservative
estimate, most of the ‘modern mathematics’ now taught in
schools has been in existence for over a century. In mathematics
new ideas have developed naturally out of older ones, and have
been incorporated steadily with the passing of time. But in our
schools we have introduced a number of new concepts all at once,
mostly without any discussion of how they relate to traditional
mathematics.

Abstractness and Generality

One of the more noticeable aspects of modern mathematics is a
tendency to become increasingly abstract. Each major concept
embraces not one but many diverse objects, all having some com-
mon property. An abstract theory develops the consequences of
this property, which may then be applied to any of the diverse
objects.

Thus the concept ‘group’ has applications to rigid motions in
space, symmetries of geometrical figures, the additive structure of
whole numbers, or the deformation of curves in a topological
space. The common property is the possibility of combining two
objects of a certain kind to yield another. Two rigid motions, per-
formed in succession, yield a rigid motion; the sum of two num-
bers is a number; two curves stuck end to end form another curve.

Abstraction and generality go hand in hand. And the main
advantage of generality is that it saves work. It is pointless to
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prove the same theorem four times in different disguises, when it
could have been proved once in a general setting.

A second feature of modern mathematics is its reliance on the
language of set theory. This is usually no more than common
sense in symbolic dress. Mathematics, particularly when it be-
comes more general, is less interested in specific objects than in
whole collections of objects. That 5 = 1+-4 is not terribly signifi-
cant. That every prime numberof the form ‘4x--1°is a sum of two
squares is significant. The latter is an observation about the col-
lection of all prime numbers, rather than about any particular
prime number.

A set is just a collection: we use a different word to avoid cer-
tain psychological overtones associated with the word ‘collec-
tion”.! Sets can be combined in various ways to give other sets, in
the same way that numbers can be combined (by addition, sub-
traction, multiplication, . . .) to give other numbers. The general
theory of arithmetical operations is algebra: so we also can de-
velop an algebra of set theory.

Sets have certain advantages over numbers, particularly from
the point of view of teaching. They are more concrete than num-
bers. You cannot show a child a number (‘I am holding in my
hand the number 3°), you can show him a number of things:
3 lollipops, 3 ping-pong balls. You will be showing him a set of
lollipops, or ping-pong balls. Although the sets of interest in
mathematics are not concrete — they tend to be sets of numbers, or
functions - the basic operations of set theory can be demonstrated
by means of concrete material.

Set theoryismore fundamental to mathematicsthan arithmetic—
although the fundamentals are not always the best starting point -
and the ideas of set theory are indispensable for an understanding
of modern mathematics. For this reason I have discussed sets in
Chapters 4 and 5. The language of set theory is used freely there-
after, though I have tried not to use anything beyond very ele-
mentary parts of the theory. It would be wrong to overemphasize
set theory per se: it is a language, not an end in itself. If you knew
set theory up to the hilt, and no other mathematics, you would be
of no use to anybody. If you knew a lot of mathematics, but no
set theory, you might achieve a great deal. But if you knew just
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some set theory, you would have a far better understanding of the
language of mathematics.

Intuition and Formalism

The trend to greater generality has been accompanied by an in-
creased standard of logical rigour. Euclid is now criticized be-
cause he didn’t have an axiom to say that a line passing through a
point inside a triangle must cut the triangle somewhere. Euler’s
definition of a function as ‘a curve drawn by freely leading the
hand* will not allow the games that mathematicians wish to play
with functions, and anyway it’s far too vague. (What is a ‘curve’?)
One can go overboard for this sort of thing, verbal arguments can
be replaced by a profusion of symbolic logic and checked for
validity by a blind application of a standard technique. If carried
too far (and in this case, enough is too much) this destroys under-
standing, instead of aiding it.

The demands for greater rigour are not just a whim. The more
complicated and extensive a subject becomes, the more im-
portant it is to adopt a critical attitude. A sociologist, trying to
make sense of masses of experimental data, will have to discard
those experiments which have been badly performed, or whose
conclusions are dubious. In mathematics it is the same. All too
often the ‘obvious’ has turned out to be false. There exist geo-
metrical figures which do not have an area. According to Banach
and Tarski? it is possible to cut a spherical ball into six pieces
and reassemble the pieces to form two balls, each the same size
as the original. On grounds of volume, this is impossible. But
the pieces do not have volumes.

Logical rigour provides a restraining influence which is of great
value in dangerous circumstances, or when dealing with subtleties.
convinced must be true; but until someone proves them they are
unjustified assumptions, and cannot be used except as assump-
tions.

Another place where one must be careful about one’s logic is
when proving something impossible. What is impossible by one
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method may easily be performed by another, so very careful
specifications are required. There exist proofs that quintic equa-
tions cannot be solved by radicals,® or that angles cannot be
trisected with ruler and compasses. These are important theorems,
because they close off unproductive paths. But if we are to be
certain that the paths really are unproductive, we must be very
cautious with our logic.

Impossibility proofs are very characteristic of mathematics. It
is virtually the only subject that can be sure of its own limitations.
It has at times become $0 obsessed with them that people have
been more interested in proving that something cannot be done
than in finding out how to do it! If self-knowledge be a virtue,
then mathematicians as a breed are saints.

However, logic is not all. No formula ever suggested anything
on its own. Logic can be used to solve problems, but it cannot sug-
gest which problems to try. No one has ever formalized signifi-
cance. To recognize what is significant you need a certain amount
of experience, plus that elusive quality: intuition.

I cannot define what I mean by ‘intuition’. It is simply what
makes mathematicians (or physicists, or engineers, or poets) tick.
It gives them a ‘feel’ for the subject; with it they can see that a
theorem is true, without giving a formal proof, and on the basis of
their vision produce a proof that works.

Practically everybody possesses some degree of mathematical
intuition. A child solving a jig-saw puzzle has it. Anyone who has
succeeded in packing th: family’s holiday luggage in the boot of
the car has it. The main object in training mathematicians should
he to develop their intuition into a controllable tool.

Many pages have been expended on polemics in favour of
rigour over intuition, or of intuition over rigour. Both extremes
miss the point: the power of mathematics lies precisely in the com-
bination of intuition and rigour. Controlled genius, inspired logic.
We all know the brilliant person whose ideas never quite work, and
the tidy, organized person who never achieves anything worth-
while because he is too busy getting tidy and organized. These are
the extremes to avoid.
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Pictures

In learning mathematics, the psychological is more important
than the logical. I have seen superbly logical lectures which none
of the audience understood. Intuition should take precedence; it
can be backed up by formal proof later. An intuitive proof allows
you to understand why the theorem must be true; the logic merely
provides firm grounds to show that it is true.

In subsequent chapters, I have tried to stress the intuitive side
of mathematics. Instead of giving formal proofs I have tried to
sketch the underlying ideas. In a_proper textbook one should,
ideally, do both; few texts achieve this ideal.

Some mathematicians, perhaps 10 per cent, think in formulae.
Their intuition deals in formulae. But the rest think in pictures;
their intuition is geometrical. Pictures carry so much more in-
formation than words. For many years schoolchildren were dis-
couraged from drawing pictures because ‘they aren’t rigorous’.
This was a bad mistake. Pictures are not rigorous, it is true, but
they are an essential aid to thought and no one should reject any-
thing that can help him to think better.

Why?

There are plenty of reasons for doing mathematics, and anyone
reading this is unlikely to demand that the existence of mathe-
matics be justified before he proceeds one page further. Mathe-
matics is beautiful, intellectually stimulating - even useful.

Most of the topics I intend to discuss come from pure mathe-
matics. The aim in pure mathematics is not practical applications,
but intellectual satisfaction. In this pure mathematics resembles the
fine arts — few people ask that a painting should be useful. (Unlike
the fine arts it has generally accepted critical standards.) But the
remarkable thing is that — almost despite itself ~ pure mathe-
matics is useful. Let me give an example.

In the 1800s mathematicians expended a lot of energy on
the wave equation; a partial differential equation arising from the
physical properties of waves in a string or in fluid. Despite the
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physical origin, the problem was one of pure mathematics: no-
body could think of a practical use for waves. In 1864 Maxwell
laid down a number of equations to describe electrical pheno-
mena. A simple manipulation of these equations produces the
wave equation. This led Maxwell to predict the existence of
electrical waves. In 1888 Hertz confirmed Maxwell’s predictions
apammmlly.detecmzndlowavesmthehboruory In 1896
Marconi made the first radio transmission.

This sequence of events is typical of the way in which pure
mathematics becomes useful. First, the pure mathematician play-
ing about with the problem for the fun of it. Second, the theoreti-
cian, applying the mathematics but making no attempt to test his
theory. Third, the experimental scientist, confirming the theory
but not developing any use for it. Finally the practical man, who
delivers the goods to the waiting world.

The same sequence of évents occurs in the development of
atomic power; or in matrix theory (used in engineering and
economics); or in integral equations.

Observe the time-scale. From the wave equation to Marconi:
150 years. From differential geometry to the atomic bomb: 100
years. From Cayley’s first use of matrices to their use by econo-
mists: 100 years. Integral equations took thirty years to get from
the point where Courant and Hilbert developed them into a useful
mathematical tool to the point where they became useful in
quantum theory, and it was many years after that before any prac-
tical applications came out of quantum theory. Nobody could
have realized at the time that their mathematics would turn out to
be needed a century or more later!

Does this mean that all mathematics, however unimportant it
may seem now, should be encouraged on the off chance that it will
be just what the physicists need in 2075?

The wave equation, differential geometry, matrices, integral
equations: all these were recognized as significant mathematics at
the time they were first developed. Mathematics has a very inter-
related structure, and developments in one part can often affect
other parts: this leads to a certain body of mathematics being
thought of as “central’, and it is in this centre that the significant
problems lie. Even totally new methods prove their significance by
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tackling central problems. Most mathematics that has later
turaed out to be useful for practical applications has come from
this central region.

Mathematical intuition triumphant? Or just that any mathe-
matics not considered significant never gets developed to the
point where it could be useful? I don’t know. But it is pretty cer-
tain that mathematics considered by a consensus of mathe-
maticians to be trivial or unimportant will not prove useful. The
theory of generalized left pseudo-heaps does not hold the key to
the future.

However, some very beautiful and significant mathematics also
turns out to be useless in practice, because the real world just
doesn’t work that way. A certain theoretical physicist secured
himself a mighty reputation on the basis of his deduction, on very
general mathematical grounds, of a formula for the radius of the
universe. It was a very impressive formula, liberally spattered with
es, cs, ks, and a few #s and +/s for good measure. Being a theore-
tician, he never bothered to work it out numerically. It was
several years before anybody had enough curiosity to substitute
the numbers in it and work out the answer.

Ten centimetres.



Chapter 2 Motion without Movement

‘GEOMETER: a species of caterpillar’ -
Old Dictionary

Geometry is one of humanity’s most powerful thinking tools. The
visual sense dominates our perceptions, and geometrical intuition
is largely visual. In geometry it is often possible to see (quite
literally) what is going on. Pythagoras’ theorem becomes almost
obvious, given the pictures in Figure 1.

Figure 1

Furthermore, theintuitivefeeling evoked by the picture can, with
a little care, be turned into a logically satisfactory mathematical
proof that the theorem is true. And because of the appeal to in-
tuition, it is a very convincing proof.

Geometry in the style of Euclid (which until recently was the
only kind of geometry that most people ever encountered) éschews
pictorial arguments in favour of a stilted and essentially algebraic
(i.e. symbol-manipulative) kind of reasoning, based on the con-
cept of congruence of triangles and an accompanying reduction of
all geometrical ideas to properties of triangles.

The notion of congruence is intuitive enough: two triangles are
congruent if they have the same shape and the same size. But what
children often find very difficult is the way that congruent triangles
are used to prove theorems. The first ‘difficult’ theorem in Euclid
was a notorious stumbling-block precisely because of the com-
plicated juggling of congruent triangles in its proof. (There were
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other problems: in the 1850s schoolboys not only had to repro-
duce Euclid’s proofs; they also had to use the same letters on their
diagrams!)

As it happeas, Euclid had several very good reasons for pro-
ceeding as he did. The overwhelming one was a wish to develop
all of geometry from a few simple basic principles by strictly
logical argument. It is true that later ages have found holes in the
logic, but these can be filled. However, most children do not ap-
preciate the need for logical proofs. At any stage in mathematics,
one’s definition of ‘logically rigorous’ tends to boil down to ‘it
convinces me’; though of course a professional logician takes a
lot of convincing! A substantial part of mathematical education
consists of revealing flaws in apparently convincing arguments
and showing the student that he ought oot to be convinced by
them. If we wish to teach children geometry, we should either
settle for proofs that zhey find acceptable, or we should be pre-
pared to spend a lot of time improving their critical faculties; in
which latter case a course in logic might be more helpful than a
course in geometry!

But it is counter-productive to show a child a proof which is
merely convincing, and which later turns out to be completely
fallacious. The long-term effects would be confusion and distrust.
We need ways of convincing the child of the truth of certain
theorems which later can be filled out into logical proofs. The
above pictures for Pythagoras’s theorem are the sort of thing I
mean. Before they can be made into a rigorous proof we have to
work on the concept of ‘area

In other words, the mathematics should reflect the intuition.

Euclid (whoever he was) certainly possessed a strong geo-
metrical intuition — otherwise his book could never have been
written. But he did not possess the right kind of mathematical
tools to express the intuitive ideas directly, and with great in-
genuity he resorted to the paraphernalia of congruence, and the
rest. Mathematical developments originating in the nineteenth
century have now provided such tools; the ideas involved have
filtered down into the schools and are included in ‘modern
mathematics’ programmes under the names °transformation
geometry’ or ‘motion geometry’.



10 Concepts of Modern Mathematics

Overtarning Euclid

The theorem referred to above as “the first difficult theorem in
Euclid’ is the one about isosceles triangles: the angles at the base
of an isosceles triangle are equal. I want to begin by giving Euclid’s
proof of this theorem; unlike that usually given in school geo-
metry it does not use any constructions related to the mid-point
of the base. This is because when Euclid wants to prove it he does
not yet have a proof that lines possess mid-points, and so cannot
use the concept.

In the diagram of Figure 2 we have produced 4B to a point D
and AC to a point E, in such a way that AD = AE. We have then
drawn lines DC and EB. Euclid’s argument is as follows:

A

D E
Figure 2

(i) Triangles ACD and ABE are congruent (two sides and
the included angle).

(ii) Hence /_ABE = [ ACD.

(iii) Hence also DC = EB.

(iv) Therefore triangles DBC, ECB are congruent (three
sides).

(v) Hence /. DCB = [ EBC.

(vi) From (v) and (ii) it follows by subtraction that
L ABC = [ ACB, asrequired.

The steps in the proof may appear more transparent if we draw
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a kind of strip cartoon of the main stages of the argument, as in
Figure 3.

It is very striking (particularly in the cartoon) how everything
comes in pairs.Side ABis on the left, AC on the right, and they are
equal. Triangle ACD is on the left, ABE on the right, and they are
congruent. And so on. Finally, / ABC is on the left, /. ACB on
the right: they are equal, and the theorem is proved.

This is a strong hint that if we can find a way of changing right
to left and left to right, then everything should be obvious. The
proof cries out for such treatment. But how can it be achieved?

Put this way, the answer is simple: turn the triangle over. If you
make a cardboard isosceles triangle, draw round it, and then turn
it over, you will find that it fits exactly. Rather than experimenting
we can argue thus: if we turn it over so that A stays where it is and
AC lies along the 0ld line A B, then since the angle at A is the same
measured in either direction, it follows that 4B now lies along the
old line AC. Since the distances 4B and AC are equal, the new
position of C is the old one of B, and the new position of B is the
old one of C. So B and C have changed places. But now every-
thing is determined, and all the sides fit; and new £ 4BC is lying
on top of old Z ACB, so the two are equal.

Arguments against the Motion

C. L. Dodgson, in one of his more mathematical works,! records
the following conversation:

MiNoS: It is proposed to prove [the theorem) by taking up the isosceles
triangle, turning it over, and then laying it down again upon itself,
EUCLID: Surely that has too much of the Irish Bull about it, and re-
minds one a little too vividly of the man who walked down his own
throat, to deserve a place in a strictly philosophical treatise?

MINoOS: I suppose its defenders would say that it is conceived to leave a
trace of itself behind, and that the reversed triangle is laid down upon
the trace so left.

This disposes of one possible objection to our procedure. But
there is another, deeper objection; and one which would have
seemed particularly insurmountable to the ancient Greeks: the
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These two triangles are con-
gruent, so the marked angles
are equal.

Hence these two triangles
are congruent, and the
marked angles equal.

Compare the marked

...and we find that these
are equal.

QED.
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whole concept of motion takes on a dubious aspect in view of
Zeno’s paradoxes. This may well have been the reason why
Euclid turned to the safer congruence arguments.

Zeno listed four paradoxes. One will suffice here to suggest the
general flavour.? In order to move from a point 4 to another
point B, it is first necessary to move to a point C midway between.
But before moving to C, it is necessary to move to a point D mid-
way between 4 and C. And before moving to D ... It would
appear that the motion can never begin!

The problem here is not as straightforward as it looks, and the
ancient Greeks were well aware of the fact. In consequence, any
reference to motion in a supposedly logical proof would have
been considered a flaw. In the real world, of course, things do
move; but an appeal to experimental evidence does not con-
stitute a proof.

An Amendment to the Motion

In fact we shall sidestep completely the problems raised by Zeno’s
paradoxes, by a careful reformulation of our ideas.

Take hold of your cardboard triangle, turn it over, and put it
back where it came from. Is it relevant to the proof on page 11
where the triangle goes in between? Does it make any difference
if you flip it over deftly, or wave it around, or dance around the
room to the Blue Danube waltz? Or if you walk out of the house,
catch a train to Liverpool, hitch-hike home, and then put it back
down?

As long as it gets put back in the same place as before, it makes
no odds where it has gone in between. Indeed, it need not have
gone anywhere: wave the magic wand and it just flips from one
position to the other. More precisely, since it makes no difference
where it goes in between, we do not need to talk about where it
goes in between, and as a result we need not assume that it goes
anywhere. What we do need to know is where each point of the

To do this we must have a way of labelling the points of the
triangle, and the easiest way is to label all the points of the plane
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once and for all, so that we do not need to do everything all over
again for a new diagram. It matters little in principle which label-
ling we adopt, but a particularly convenient one is furnished by
coordinate geometry: each point in the Euclidean plane islabelled
by its coordinates (x, y) with respect to some fixed choice of axes.
. Suppose for definiteness that our axes are marked off in centi-
metres. Suppose we wish to move 5 cm to the right. Where does a
given point (x, y) end up?

2
=)
DS ——-

Figure 4

‘We can work this out from Figure 4. The y-coordinate is clearly
unchanged, while the x-coordinate increases by 5. The point 5 cm
to the right of (x, y) is (x+35, »).

Notice now that (x, y) does not, in fact, move at all. Look at the
point (2, 3), then at (7, 3). Did (2, 3) move? Then what is it doing
still sitting at (2, 3)? It is essential to our labelling system that the
points of the plane do not move. What does move is our attention.
If a triangle had its vertices at (1, 1), (2, 1), and (1, 4), and if it
moved 5 cm to the right, then its vertices would be at (6, 1), (7, 1),
and (6, 4), as in Figure 5.

‘What we now have is not one triangle, but two; one lying Scmto
the right of the other. By transferring our atteation from one to
the other we can achieve, without any actual movement, the effects
which would be obtained with movement. (Incidentally, this helps
to explain Minos’ idea that the triangle should leave a ‘trace’: we
do rather more, and leave the whole triangle!)
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The way in which our attention changes can be specified by the

Figure 5

scheme
1, 16,1
@2, 10)-(1,1)
(1,469
and in general

(x, y)>(x+5, ).
‘We introduce a symbol, say T, which will mean *the point 5 cm to
the right of *. So

T1,1) =(6,1)
reads: ‘The point 5 cm to the right of (1, 1) is (6, 1), and in

general
T(x,y) = (x+5,5) (4]
reads: ‘The point 5 cm to the right of (x, y) is (x+5, »)".

This new symbol T accomplishes much the same objects as the
instruction ‘move 5 cm to the right’. But it doesn’t actually move
anything; it just tells us where things would go if they did move.
Furthermore, everything we need to know about T is captured in
the formula (1), which can be taken as a definition of T; indeed as
a definition of ‘move 5 cm to the right .

Anything like T is called a transformation of the plane. A trans-
formation F is considered to be known if, for every point (x, ),
we know which point is F(x, y). We might specify it by a formula,
such as (1); but any definite way of finding F(x, y) would do. To
each motion (in the intuitive sense) corresponds a transformation
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Fsuch that
F(x, y) = the point to which an object
placed on (x, y) would move.

The transformations have the advantage that, although motivated
by the idea of movement, they do not explicitly involve that idea,
and hence avoid the taint of Zeno’s paradoxes. Using transfor-
mations we can create the kind of mathematics in which the idea
‘turn the triangle over and lay it down on top of itself* has a
sensible interpretation, with no logical pitfalls,

Rigidity

It is instructive to work out which transformations correspond to
given motions. For example, the motion ‘reflect in the x-axis’
corresponds to the transformation G such that
G(x, y) = (x, —¥)
and ‘rotate through 90° clockwise® corresponds to H, where
H(x,y) =, —x).
These can easily be read off from Figures 6 and 7.

Figure 6

Conversely, we can work out which motion corresponds to a
given transformation. Thus if K satisfies
K(x,y) = (x+3,y-2)
then the corresponding motion takes everything 3 cm to the right
and 2 cm downwards.



<

Figure 7

More complicated transformations can be investigated by
plotting where a few points go. Thus if
J(x, ) = (x*, x)
we can compute: J(1, 1) = (1, 1), J(2, 3) = (4, 6), etc. and plot
the resulting points on graph paper. This particular transforma-
tion takes the square with vertices (1, 1), (1, 2), (3, 1) and (3, 3)
into the shape shown in Figure 8.
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Thus this transformation J distorts the shape, bending and
twisting it. This is not the sort of transformation that one usually
wants in geometry; if we are allowed to stretch and bend things
then all triangles will be interchangeable and nothing of interest
results.

The sort of transformation we need for coordinate geometry
corresponds to rigid motions, that is, movements which do not
change shapes or sizes. Our argument about the isosceles triangle
will not hold if the triangle changes shape when turned over. The
transformations G, H, K above correspond to rigid motions, but J
does not.

The essence of a rigid motion is that it does not stretch or shrink
anything. No two points move closer together or further apart.
In other words, points always stay the same distance from each
other. We can express this algebraically by taking coordinates
in the Euclidean plane. Now in coordinate geometry there is a
formula for the distance between two points (x, y) and (i, v),
based on Pythagoras’s theorem; namely:

Vix—u+(r—0)’}
If a transformation Fis such that
F(x,y) = (x',5)
F(u,0) = (&', v)
then the distance between F(x, y) and F(u, v) is
VI =uP+0 —v'))
So Fcorresponds to a rigid motion provided the two distances are
always equal, no matter which points (x, y) and (i, v) we choose.
Squaring up, this means that
x—uP+(—o) = (X —u'P+(/ -0}
for all (x, y) and (u, v). A transformation F will correspond to a
rigid motion if and only if it satisfies this equation. If we wish, we
may define a rigid motion to be such an F, thereby identifying the
formal concept with the intuitive one.

In fact, by playing about with this equation, one may produce
somewhat simpler characterizations of rigid motions. However,
it would take us out of our way to pursue this tack. The point I
want to make is that it is possible to specify a rigid motion as a
special kind of transformation.



Motion without Movement 19

Translation, Rotation, Reflection

‘We now look at three special kinds of rigid motion. The frans-
lation (or slide) moves every point a fixed distance in a fixed
direction (Figure 9).

W

The rotation: fix a point P (the centre of rotation), and move

every point around P through a fixed angle 6, as shown in Figure
10.

P b\
(]
o

Figure 10

The reflection: choose a line /, and reflect the points of the plane
as if in a mirror placed along the line (Figure 11).
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Figure 11

Using coordinate geometry we can easily work out the corres-
ponding transformations. For example, a rotation through angle
@ about the origin gives the transformation R, where

R(x, y) = (x cos §—y sin 6, x sin 6+ cos ).
From the formulae for these transformations we can also check
various properties suggested by intuition: that they do indeed
give rigid motions, that a rotation through @ followed by a rotation
through ¢ gives a rotation through 8+-¢, and so on.

We single out these three types of motion because they seem to
involve quite distinct principles. Each takes a fairly simple form,
as do the expressions for the corresponding transformations. We
do not single out any other kinds of rigid motion, because every
rigid motion of the plane can be obtained by a succession of
translations, reflections, and rotations. Pictorially this follows
from Figure 12,

(i) We start with a triangle 4BC and any rigid motion U.

(ii) By a translation T we can make 7(A4) and U(A) coin-
cide.

(iii) Then a rotation S about the point U(A) brings T(B)
into coincidence with U(B).

(iv) Finally reflection in the line U(A)U(B) brings S(T(C))
into coincidence with U(C).
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Figure 12
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(Of course, in certain cases we may not need one of these
steps.)

We have used a triangle here. It is a consequence of the two-
dimensionality of the plane that any rigid motion is uniquely
specified by what it does to a (non-degenerate) triangle, whence it
is sufficient to consider only triangles.> We have proved that: any
rigid motion of the plane can be obtained by a translation, fol-
lowed by a rotation, followed by a reflection (possibly with some
stages omitted).

Obviously the reflection is needed only when the motion turns
figures over. So a motion which leaves everything the same way up
can be obtained as a translation followed by a rotation. (With
further analysis, one can say more than this.) Suppose we apply
two reflections, in (possibly) different lines. The first turns things
over, the second turns them back the right way; so both reflec-
tions one after the other leave things the right way up. This means
that the result of a double reflection is the same as some transla-
tion followed by some rotation. This fact is a good deal less ob-
vious than several we have mentioned, but it emerges without
difficulty from our work.

The result above can be expressed as follows: if U is any rigid
motion, then there exists a translation 7, a rotation S, and a re-
flection R, such that for any point X = (x, y)

U(X) = R(S(T(X))).

(We need the usual proviso that any of R, S, T may be omitted in
certain cases.) A more concise notation suggests itself. Given two
transformations E, F we can define EF by

EF(x, y) = E(F(x, ).
If E corresponds to a rigid motion (which we also call E) and F
to a rigid motion (F) then EF corresponds to the motion ‘first do
F, then do E’. (This is because when we work out E(F(x, y)) we
first find F(x, y), and then E of that. It is a pity that the motions
come out in the wrong order;* a similar phenomenon occurs in
evaluating log sin (x) when we first work out sin (x), then take
the logarithm.)

Earlier on we had two rigid motions giving rise to transfor-
mations G, H, such that
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G(x, y) = (x, =)
H(x,y) = (y, —x)
‘We compute GH as follows:
GH(x,y) = G(H(x, y))
= G(yy —X)
=, x).
(Notice that for the last line we have to remember that the symbols
x and y are quite arbitrary: we could just as easily have specified
that G(u, v) = (4, —v), and then we can substitute y for « and x
for v).

If we draw a diagram (Figure 13) we can see that this corres-
ponds to the rigid motion obtained by reflection in the diagonal
liney = x,

e
Ve

X

/
Figure 13

Call the corresponding transformation D, so that
D(x, y) = (», x).
Then we have shown that
GH(x, y) = D(x,y)
for any point (x, y). It seems only reasonable to take this as
meaning
GH = D.

Kyougobacktotheomupondingmoﬁomandupuimt,you
willﬁndtl:attlﬂ:eqmtionches:l:s.Ifyonlmatethrough%°
clockwise and then reflect in the x-axis, the result is the same as a
reflection in the line y = x. So our computation agrees with ex-
periment.
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If instead of GH we work out HG, we have
HG(x,y) = H(G(x, 7))
= H(x, —y)
=(—y, —x)
which now corresponds to a reflection in the other diagonal
y = —x. Notice that GH # HG. There is really no reason, apart
from habit, to suppose that GH and HG should be equal; but any-
way the example shows that they need not be. This is why we must
be careful as to whether EF means ‘first F, then E’ or the other
way around.
We can now rewrite our equation in thie very simple form
U = RST.

The fact that we can define a ‘product’ EF suggests the possi-
bility of an ‘algebra’ of transformations. Pursued in one direc-
tion this idea leads to linear algebra, which we discuss in Chapter
15. In another direction it leads to group theory (Chapter 7).

Back to the Theorem

We have disgressed somewhat from the isosceles triangle which
started us on our way, but we have now built up the machinery we
need to make the ‘turn it over’ proof respectable. To someone
who has had enough practice with manipulating transformations,
the instruction alone will suffice. More cautiously, we should
argue something like this:

There is a transformation T corresponding to a reflection in the
line bisecting /. BAC. Because rigid motions keep distances un-
changed (and therefore also keep angles unchanged) it follows that
T(A) = A, T(B) = C,and T(C) = B. Thus applying T to L ABC
yields 2. ACB. Since the sizes of angles are unchanged, we have

L ABC = [ T(AT(B)T(C) = L ACB
which is what we had to prove.

Once you get used to it, this really is easier to follow than
Buclid’s proof; and the mathematics follows the same line of
argument as the intuitive idea ‘turn it over’.

Now we can use the transformation concept to talk about rigid
motions, without having Zeno’s ghost breathing down our necks.
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‘This opens the way to new and simplified proofs of many standard
theorems of geometry. We give two examples:

(1) If two angles of a triangle are equal, then the triangle is
isosceles.

Let the triangle be ABC, with angles at 4 and B equal. Reflect
about a line perpendicular to the mid-point of AB. At first sight
we expect a picture like Figure 14.

C

A B
Figure 14

Butequality ofanglesat 4 and Bimplies that thereflected triangle
lies exactly on top of the unreflected one, so that AC is equal to
BC. Therefore the triangle is isosceles.

(2) Equal arcs of a circle give rise to equal chords.

Let A, B, X, Y be points on a circle, centre O, with arc AB
equal to arc XY (in length) as shown in Figure 15.

Rotate the figure about O so that 4 falls on X. Then because of

Y

AS———8B
Figure 15
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the equality of arc lengths Bfalls on ¥, so chord 4B falls on chord
XY, and the two are equal.

‘You should now be able to think up other geometrical theorems
which can be proved by our methods. Naturally, to carry out
such a programme for the whole of geometry requires more work
in setting up the basic notions, and not every geometrical theorem
will be a direct consequence of properties of rigid motions. In fact,
those which are direct consequences become essentially trivial,
and we can concentrate on the less straightforward geometrical
properties. Use of rigid motions helps us to sift out the really in-
teresting results from among masses of trivia.



Chapter 3 Short Cuts in the
Higher Arithmetic

*One of the endearing things about
mathematicians is the extent to which
they will go to avoid doing any real
work’'— Matthew Pordage

Primitive man’s consciousness of numbers may well have arisen
from a desire to keep track of the important things in his life.
How many sheep/arrowheads/wives do I have? How long before
the spring floods? These questions focus attention on the counting
numbers 1, 2, 3. . . although the abstract concept ‘ number’ came
much later than the practical use of the idea. That two sheep and
two wives have something in common ~ namely ‘two-ness’ - is by
no means obvious, and is not appreciated by very young children
who nevertheless can distinguish between one sheep and two
sheep.

To these counting numbers other societies added other num-
bers, each according to its needs. The Hindus invented zero.
Fractions were introduced to handle division of materials into
parts. Negative numbers made their appearance; giving first the
system of integers. .., —3, —2, —1,0,1, 2, 3, ... ;and the nega-
tive fractions, leading to the rational numbers p|q for integers
P, g— for example, 1/2, 17/25, —11/292. Greek geometry and the
needs of the calculus led to the real numbers - including numbers
like 4/2 which cannot be represented as rational numbers - and
attempts to solve algebraic equations gave rise to the mysterious
complex numbers by insisting that —1 should have a square root
and assuming that it did.

At each stage in this development there were vast intellectual
battles as to whether these newfangled things really were num-
bers.

As it happens, all these numbers fit together into a grand
cheme (Figure 16).

The arrows here mean that the number system at the head of the
arrow contains all the numbers of the system at the tail, together
with some extras.
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N fractions

'\wllkmmbets

_..é_,g_,

countingumbers
Figure 16

Further, in each system it is possible to perform “arithmetic’,
These similarities help to explain why the word ‘number’ was
persistently attached to the objects of each of these multifarious
systems. The essential arbitrariness of the entire development be-
came forgotten, and ‘number’ acquired a quality akin to divine
revelation.

None of the numbers in any of these systems have any existence
in the real world. I have yet to meet the number 2 in my travels,
1 have come across 2 sheep, and insofar as I could establish at the
of that number, but I have never met the number itself. Certain
properties of the real world can be described using numbers; the
numbers are abstract constructs derived from real-world be-
haviour.

Different physical situations need different mathematical de-
scriptions. To count how many wives we have we need only
counting numbers; to weigh our gold we need fractions. A Greek
geometer wanting to know the length of the hypotenuse of an
isosceles right-angled triangle needed numbers like 4/2. A Renais-
sance mathematician solving a cubic! equation found a use
for v/ —1.
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There are many important mathematical systems which are not
called ‘numbers’, as a result of historical accident and human
psychology; but which arise in circumstances just as practical as
those systems which are called ‘numbers’. They often have pro-
perties in common with ‘numbers’ and can even be used to in-
vestigate them. The distinction between the numerical and‘the
non-numerical is as arbitrary as the belief that ‘numbers’ are god-
givea ig illusory.

Arithmetic in Miniature

A particularly interesting mathematical system is that which is
sometimes referred to as modular arithmetic.? Such a system
arises in any situation in which events repeat themselves in cyclic
fashion: the hours of the day, the days of the week; or the mea-
surement of angles, where 360° is the same as 0°, 361° the same as
1°,and soon.

Suppose we number the days of the week from 0 to 6, starting at
Sunday, as in Figure 17.

Sunday
Saturday Monday
Friday Tuesday
Thursday Wednesday

Figure 17

If we continue the numbering, day 7 is Sunday again, day 8 Mon-
day, day 9 Tuesday ... . In a certain sense we might say that
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7=0,8=1,9=2,..., where of course ‘=" does not have
quite its usual meaning! We can also work backwards: day —1 is
the day before Sunday, which is Saturday, so —1 = 6; similarly
—2 = 5. The entire system of integers becomes wrapped around
the circle of days, roughly as in Figure 18.

Figure 18

Itisnot hard to give a general criterion for which numbers fall on
which day of the week:

Sunday:  ...,—14,-7,0,7,14,...

i.e. numbers of the form 7n
Monday: ...,-—13,—6,1,8,15,...

i.e. numbers of the form 7n+-1
Tuesday: ...,—12,-5,2,9,16,...

i.e. numbers of the form 7n+-2
Wednesday: ..., —11, —4,3,10,17,...

i.e. numbers of the form 7n+-3
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Thursday: ...,—10,-3,4,11,18,...

i.e. numbers of the form 7n+-4
Friday: eees—9,-2,512,19,...

i.c. numbers of the form 7n+5
Saturday: ...,-—8,-1,6,13,20,....

i.e. numbers of the form 7n+-6
(Numbers of the form 7n+7, of course, are equal to 7(n+1) and
80 of the form 7n.)

The day corresponding to a given number is determined by the
remainder that number leaves on division by 7. These remainders
are always 0, 1, 2, 3, 4, 5, or 6. if we indulge in a kind of
“arithmetic of remainders’. Let us agree that a statement like

44+5=2
carries the interpretation ‘day 4 plus 5 days is day 2°, which is
quite a natural one, we can build up an addition table for the
‘numbers’ 0-6 as follows:

+]0123456
0/01 23456
1{1 23 4560
2/23 45601
3(3456012
414 56 01 23
5{5 6 01234
6/6 012345

This table embodies the essential structure of the 7-day cycle. If
we are asked ‘ What is 751 days after Thursday?’ we rephrase it as
44751 =17

Now 751 isn’t in our table, but we observe that
751 = 7.107+42
which is of the form 712, so that 751 = 2. So now we have
442 =17
and from the table, ? = 6, which is a Saturday.
This ‘addition’ has its individual quirks: for example
1414141414141 =0,
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but interpreted in days this makes perfect sense, and one soon gets
used to such peculiarities.

Emboldened by our success we might try to define multiplication
for this system. Certainly it makes little sense to multiply Sunday
by Monday; we avoid this problem by ignoring it.> If 3 X6 is
going to make any sense at all, it should be equal to 6+6+6.
From the table, this is 4. So we define

3x6=4,
However, it would be equally reasonable to demand that 3 x6
ought to be 3+3+3+3+3+3. Perhaps this gives a different
answer? But when we work it out, we get 4 again. We might argue
that since 3 = 10 then 3 x 6 ought to be 10 x 6 or 60 - but 60 = 4.
Whatever it is that we are doing, it does at least give consistent
results, which is encouraging.

By use of the same repeated addition we build up this multi-
plication table (try itl):

x|0123 456
0/00000O00O0
1101 23 456
210246135
3|03 62514
4/0 415263
5|0 5316 42
6/0 6 543 21

The end result of our efforts - the numbers 0-6 and the two
tables - is known as the system of integers to the modulus 7 (or
integers modulo 7 for reasons of linguistic purity, or integers mod 7
for convenience). The fancy word ‘modulus’ is there only to signal
the role played by the number 7. There is nothing special here
about 7, any other number would do. If we had started with the
hours on the face of a clock we would have had numbers 0-11 and
arithmetic modulo 12 (or 0-23 and mod 24 for a 24-hour clock);
in general any integer can serve as modulus. All you do is imagine
a ‘week’ with that number of days, and proceed as before.
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Ceougruences

In 1801 C. F. Gauss, reckoned to be one of the three greatest
mathematicians who have ever lived, published the Disquisitiones
Arithmeticae. This was a treatise on the theory of numbers; that
is, properties of the ordinary system of integers. Gauss, of course,
was interested in deeper ideas than the simple numerical compu-
tations which comprise elementary arithmetic. Number theory,
from its subject-matter, may sound very easy; on the contrary it is
one of the most difficult branches of mathematics and bristles
with unsolved problems.

His opening section, on which all of his subsequent work was
based, begins with this definition:

If a number a divides the difference of the numbers b and ¢, then b
and c are said to be congruens* relative to a . . . The number a is called
the modulus.

(By ‘number’ Gauss meant ‘integer’.)
If b and ¢ are congruent to the modulus a we shall write
b=c (mod a).

If it is clear from the context which modulus is being used,
reference to it may be suppressed.

To see how this links up with our previous work, let’s look at
congruences mod 7. If b and ¢ are congruent mod 7 then there
exists an integer k such that

b—c=1Tk
or that

b =Tk+c.
Thus the numbers congruent to a given number ¢ are precisely
those of the form 7k-+c. The numbers congruent to 1 mod 7 are
those of the form 7k+1.

Given any number b we can divide it by 7 and find the re-
mainder r, so that

b=Tq+r
from which it follows that b is congruent to r (mod 7). Since these
remainders can take only values between 0 and 6, we know that
every number is congruent (mod 7) to one of 0, 1, 2, 3, 4, Sor 6.
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In Figure 18, the numbers on the spiral which lie above day 0,
Sunday, are those of the form 7n; in other words, those congruent
t00. The numbersabove day 1 are those congruent to 1. In general,
the numbers above day d are those congruent to d.

Now it so happens that congruences can be added or multiplied,
in the same way that equalities can. More precisely, if

amd (mod m)

and
bml (mod m)

then
at+bmd+l¥ (modm)

and

abmdb  (modm).
Let me pause to prove this. The proof uses only elementary
algebra. From the first two congruences we know that there are
integersj and k such that

b = mk+b'.
To show that a+b and @’ 45’ are congruent, we must show that
their difference
(@+b)—(d+b)
is divisible by m. Substituting from () we see that this expression
is
m(j—k)

which is manifestly a multiple of m. Likewise, to prove the second
assertion we must look at
ab—a'tf

which reduces to
mika+jb—jkm),
also a multiple of m.

This means, for example, that from the facts that 1 == 8 and
3 = 10 (mod 7) we can deduce that 1+3 = 4 is congruent to
8410 = 18; and that 1 X3 = 3 is congruent to 8 x 10 = 80. Asa
check, the differences 14 and 77 are both divisible by 7.

Our carlier assertion that, in the arithmetic of the days of the
week, 445 = 2, can now be restated more accurately as:

44+5=2 (mod 7).
Our addition and multiplication tables are tables of congruences,
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rather than equalities ; and an entry such as 4 X5 = 6 carries the
information that if any number congruent to 4 is multiplied by one
congruent to 5, then the result is always congruent to 6. The arith-
metic of congruences mod 7 allows us to throw away multiples of
7 if we wish, which has obvious applications in situations where
moving 7 places on gets you back to the beginning.

Using congruences mod 10 it is possible to explain why all
perfect squaresend in 0, 1, 4, 5, 6, or 9, but not in 2, 3, 7, or 8. All
numbers are congruent mod 10 to something between 0 and 9, so
all squares are congruent to the squares of 0, 1, . . . , 9. Caku-
lating, these are congruent to0, 1, 4, 9, 6, 5, 6, 9, 4, 1 respectively.
Since the remainder on dividing a number by 10 is its last digit (in
the base 10), these last digits are all that can occur.

A great many other arithmetical occurrences can be explained
in a similar way.

Division

In arithmetic mod n we can add and multiply numbers much as in
ordinary arithmetic. It is also possible to subtract. The problem of
dividing one number by another is more interesting, because the
answer depends on which modulus you use.

Suppose we wish to give a meaning to 4/3 (mod 7). As yet, the
symbols have no meaning; we are free to give them any meaning
we wish. But we want 4/3 to have some connection with division,
which limits our choice. The most natural definition would be to
let 4/3 be whichever number x satisfies the equation.

3x=4 (mod 7).
If you look at the multiplication table, you will find that there is
precisely one value of x which will work, namely x = 6. So in
arithmetic mod 7 we can define

4/3 =6.

In the same way, if p and g are any two numbers between 0 and 6,
we should want p/q to be equal to y, where

w=p (mod 7).
Now gy is the number appearing in row ¢ and column y of the
multiplication table. In order for the congruence to have a
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solution y, the number p must occur somewhere in row g. And in
order to have a srigue solution, p must occur only once in row g.
(If there are two or more solutions, we don’t know which one to
take for p/q.)

‘The multiplication table (mod 7) is such that in every row apart
Jfrom row O each number occurs once and only once. So we can
find a unique solution of the above congruence for any nom-zero g.
This means that we can define p/g when g 0. This is not much
of a restriction, because we don't expect to be able to divide by
2ero in any case.

If instead we work to the modulus 6, what happens? The multi-
plication table now takes the form

with very different consequences. Only in rows 1 and S does each
number appear. In row 2, only the numbers 0, 2, and 4 appear,
each twice. In row 3, only 0 and 3 appear. So we can divide by 1
or by 5 without any difficulty. But there is no way to define 1/2, or
3/4. And there are two different candidates for 4/2 (namely 2 and
5), and three candidates for 3/3. What a mess! How different from
the modulus 7!

There is no good way out of this dilemma. One must accept that
in the modulus 6, division is not always possible; the situation is
a good deal worse than what happens for the integers (not to any
modulus). Although we cannot divide one integer by another and
get an integer, in general, we can enlarge the system of integers
into the rational numbers and do division in the larger system.
Moreover, the larger system satisfies all the ‘laws of arithmetic®
(such as a+b = b+a) which the system of integers does.

We cannot enlarge the system of integers mod 6 into anything
where division is possible, and the laws of arithmetic still hold.
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(We shall have much more to say about these ‘laws’ in Chapter 6.)
By “enlarge’ I mean ‘add a few more “numbers™ °. Note that the
integers mod 6 cannot be enlarged to get the ordinary integers,
because that would involve changing the multiplication table and
the addition table; instead of enlarging the system we destroy it.

This is because there are too many 0s in the multiplication table.
There are cases where the product of two non-zero numbers is
zero: for example

2x3=0 (mod 6).

Suppose we could enlarge the system into one where we could
define 1/2 to be something — say a. Then, using the laws of arith-
metic, and the notation . * for ¢ x °, we have

Im1.3=@.2).3ma.(2.3)=a0=0 (mod6)
which isn’t true. So if we want an enlarged system, it won't satisfy
the laws of arithmetic.

The same trouble will arise in any modulus m where the product
of two non-zero numbers can be zero.

By writing out multiplication tables to the moduli 2, 3,4, 5, . ..
it becomes apparent that division (except by zero) is always pos-
sible if the modulus is 2, 3, 5, 7, 11, 13, 17, . . . and is not always
possible if it is 4, 6, 8,9, 10, 12, 14, 15, 16, . . . It doesn’t take a
genius to recognize the pattern. The first list of numbers looks like
the sequence of prime numbers (with no divisors other than them-
selves and 1); the second seems to be the composite numbers
(which can be expressed as a product of two smaller ones).

‘We can easily prove that with a composite modulus, division is
not always possible. Suppose the modulus is m, where m = a.b
and each of a and b is smaller than m. Then neither a nor b is con-
grueat to 0 (mod m), but their product a. b is m, which is congruent
to 0. We noticed earlier that 2.3 == 0 (mod 6), and this is just a
more general case of the same thing. In the same way that we
deduce that 1/2 cannot be defined, it follows that (mod m) we
can’t define 1/a (or 1/b) in any useful way.

This disposes of the composite moduli. What of the prime
moduli? For all we know, there could be some prime moduli
where division is not always possible. Our evidence only covers
the first few primes, but perhaps for a very big prime (maybe too
big to compute a multiplication table) something different happens.
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Let us take a prime number p. Let ¢ be anything not congruent
to zero (mod p). Recall that division by ¢ will be possible provided
each number-(mod p) occurs exactly once in row ¢ of the multi-
plication table. Let us first establish that no number occurs twice.
If it did, there would be two distinct numbers (mod p), say 4 and
o, such that

tu =ty (mod p)
whence
t(u—v) =0 (mod p).

So, reverting to ordinary integers, the product #(u—o)is divisible
by p. But if a prime number divides a product of two numbers,
then it must divide one of them. If pdivides ¢, then ¢ == 0 (mod p),
which is impossible by our choice of 1. If p divides (t—v) then
u = v (mod p), which is also impossible. So our assumption that
the same number occurs twice in row # leads to an impossibility.
It must, therefore, be a false assumption. We are left with only
one possibility: no number occurs twice in row £.

There are exactly p spaces in row ¢, and exactly p different
numbers (namely 0 . . . p—1) which can appear. If we can’t put
any in twice, then the only way to make up the numbers is to
put each one in once. (This is known as the ‘pigeon-hole prin-
ciple’.) So each number occurs exactly once in row 7. By what we
said before, this implies that we can define division by #in a unique
manner,

Here is an amusing application, to the famous ‘Fermat num-
bers’. In 1640 Fermat asserted* that all numbers of the form

2241
are prime, but remarked that he could not prove this. The first
few are 3, 5, 17, 257, and 65 537, which are prime. Euler, in 1732,
showed that Fermat was wrong; the next number in the sequence
is 23241, and this is divisible by 641. Euler found this by explicit
calculation. But once we know what the answer is, there’s an
easier way.

Observe that 641 is prime, and that 641 = 2¢+5% = 145.27,
Working to the modulus 641 we have:

2= -1/5

2*=-25,

so that
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22 = (—2/5)*
= 24/54
= —]
(using the first equality above for 641). Therefore 232+1 is
divisible by 641.

‘Two Famous Theorems

Congruencescan be used for more than just numerical calculations.
They are particularly important in the theory of numbers; and I
shall illustrate this by proving two famous theorems. The proofs
are not hard to understand once you see them, but, as E. T. Bell®
hassaid, ¢. . . It is safe to wager that out of a million human beings
of normal intelligence of any or all ages, less than ten of those who
had no more mathematics than grammar-grade arithmetic would
succeed in finding a proof within a reasonable time — say a year.’
If you work out successive powers of numbers to the modulus 7,
you will find that they repeat the same sequence over and over
again. For instance, the powers of 2 are
20=1 28 =1 =1
2' =2 2¢=2 27m2
2 =4 2%5=4 2% =4...(mod7)
and the pattern 1, 2, 4, 1, 2, 4, 1, 2, 4 repeats for ever. For powers
of 3 the pattern is 1, 3, 2, 6, 4, 5 repeated; and there are similar
patterns for the other numbers, as you can easily check for your-
self.
It is easy to see that once some power becomes equal to 1, the
sequence must repeat. Since 3% = 1, it follows that 37 = 3!,
3% = 32, etc. To the modulus 7, every number other than 0
satisfies
x$=1 (mod 7)
(although for certain values of x something less than 6 will also
work).
If you do the necessary arithmetic, you will see that for the
modulus 5 every non-zero number satisfies
x* =1 (mod 5),
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for modulus 11 the result is
x0=1 (mod 11)

and for 13
x12 =1 (mod 13).

I'm restricting attention to prime moduli because the pattern is

more obvious there. It looks very much as if we should have
xP-1m1 (mod p)

for any prime p and any x not congruent to 0 (mod p).

One way to prove this can be illustrated by working modulo 7.

The non-zero numbers mod 7 are
123456
If we double all these we get
246135,
which are the same numbers in a different order. So the products
1.2.3.4.5.6
and
2.4.6.1.3.5

are congrueat mod 7. But the second one is also congruent to
(1.2).(2.2X(3.2X4.2X5.2X6.2) (mod 7)
which is
2%.(1.2.3.4.5.6). (mod 7)

Therefore

1.2.3.4.5.6 =25.(1.2.3.4.5.6) (mod 7)
and dividing out we get

1m=2¢ (mod 7).
The same thing happens if we triple all the numbers:
Wwe now get
362514
and the same argument leads to
1=38 (mod 7).

Now we'll do the general case mod p. Since p is prime we know
that every number appears exactly once in row x of the muitipli-
cation table mod p. So the numbers

1.x),2.%,...,((p—1.x)
are just 1,...,p—1 in a different order. Multiplying them all

together gives
xP-1(1.2...(p—1) = 1.2...(p—1) (mod p)
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so dividing both sidesby 1.2.. . . (p—1) we get
xP-l=1 (mod p)
and the theorem is proved.
A simple application of this theorem tells us that
7181 =1 628 413 597 910 448
is divisible by 19, without our doing any division. In deeper
number-theoretic work, the general theorem is indispensable.” It
is known as Fermat’s theorem (not to be confused with Fermat’s
last theorem!®).

The second theorem tells us more about the product
1.2...(p—0)
which occurred in the proof of Fermat’s theorem. Can we evaluate
this mod p?
When p = 7 the productis
1.2.3.4.5.6.
If we rewrite this as
1.(2.4X3.5).6
we find that it is congruent to
1.1.1.(-1)
which is —1. The pairing off of numbers is chosen to make the
products of pairs 1.
‘We can do the same sort of thing mod 11:
1.2.3.4.5.6.7.8.9.10
= 1.(2.6X3.4X5.9X7.8).10
=1.1.1.1.1.(-1)
= —1
Or mod 13:
1.2.3.4.5.6.7.8.9.10.11.12
=1.(2.7X3.9)4.10)5.8X6.11).12
=1.1.1.1.1.1(-1)
= —1.

Inthegeneralcasewetake the numbers 1,2, . ..., p—1 and pair off
each number with its reciprocal. This cancels out all the numbers
except those which equal their reciprocals:
these satisfy

x=1/x (mod p)
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or
x?=1 (mod p)
which is the same as
x2—1=0 (mod p)
which factorizes:
(x—1)}x+1)=0 (mod p).

Socither x = 1 or x = —1. So we can rewrite
1.2...0-1)=1.2.7)...(2.0.(-))
= -1
This proves that for any prime number p,
1.2...p-D= -1 (mod p)
which is known as Wilson's theorem.

If instead of p we take a composite number m, the theorem is
false. For if m is composite, it has some factor d < m—1. Then
d will divide 1.2 ... (m—1), and so will leave remainder 1 on
dividing 1.2 ... (m—1)+1. This means that m cannot divide
1.2...(m—1)+1.

Theoretically we have a test for prime numbers. To find out
whether a given number g is prime, we work out

1.2...(¢—D+1
and divide by q. If there is no remainder, g is prime: if there is a
remainder, g is composite. Thus
1.2.3.4.5.6+1 =721
is divisible by 7, so 7 is prime;
1.2.3.4.5+1 =121
is not divisible by 6, so 6 is composite.

However, even for a relatively small number like 17 we have to
work out 1.2, .. 16+1, which is 20 922 789 888 001, and divide
by 17. The test is not a practical one, even on a fast computer.

But it is a striking theoretical result: that one could test for
primes without trying possible divisors.



Chapter 4 The Language of Sets

“I have had occasion to read aloud

the phase “where E’ is any dashed([l.e.
derived)set . It is necessary to place the
stress with care’ - J. E. Littlewood

Almost any book on ‘modern mathematics’ talks about sets, and
is liberally bespattered with strange symbols like €, <, U, N, 0.
The present volume will be no exception, although I shall try to
keep the symbols to a minimum. There is a good reason for this
obsession with sets. Set theory is a language. Without it, not only
can we not do modern mathematics, we can’t even say what we are
talking about. It is like trying to study French literature without
knowing any French. We shall need to use some of the language
of set theory in the remainder of the book ; hence this chapter.

A set is a collection of objects: the set of all English counties,
the set of all epic poems, the set of all red-headed Irishmen. The
objects belonging to the set are the elements or members of the set
(we shall use both terms indiscriminately). Thus Paradise Lost is
a member of the set of all epic poems; Kent is an element of the
set of all English counties. Although in introducing set theory it is
helpful to work with concrete sets, whose members are real
objects, the sets of interest in mathematics always have members
which are abstract mathematical objects: the set of all circles in
the plane, the set of points on a sphere, the set of all numbers.

Many of the concepts of set theory can be vividly illustrated
using simple apparatus: a few small objects (pencil, eraser, pencil-
sharpener, some marbles, a sugar mouse, etc.) The objects (or
some of them) will be the elements of the set; the set itself will
consist of the chosen objects inside a bag. (It is crucial to have the
bag.) To find out whether or not a given object is a member of the
set, you look in the bag and see. For this reason, polythene bags
are best! You may find it helpful to have such apparatus on hand
for what follows.

We shall build up an algebra of sets. As in ordinary algebra, we
shall use letters to represent sets and elements. To help keep track
we shall generally use small letters for elements and capital letters
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for sets, but it is impossible to keep rigidly to this convention
because sets can themselves be elements of other sets (put one bag
inside another!) If S is the set of all epic poems, and if x is Paradise
Lost, then x is a member of S. The phrase ‘is a member of* occurs
30 often that it is convenient to have a symbol; the one curreatly
inuseise.! So
x€S

means ‘x is a member of S”.

A set is considered to be known if we know what its elements
are - or at any rate if in theory we can find out. There are many
ways of specifying a set, of which the simplest is to list all the mem-
bers. In this way the electoral roll defines the set of people en-
titled to vote. The standard notation for this is to enclose the list
in curly brackets. So {1, 2, 3, 4} is the set whose members are
1,2, 3, 4 and only these, while {spring, summer, autumn, winter}
is the set of seasons. Figure 19 shows the set

{pencil, marble, sugar mouse}.
The curly brackets play exactly the role of the polythene bag.

Two sets are equal if they have the same elements. Although we
can put two pencils into a polythene bag, we cannot put the same
pencil in fwice (unless we take it out in between). Unhappily,

there is no such physical restriction on our curly bracket notation;
we can casily write things like {1, 2, 3, 4, 4, 4}. Read literally, this

Figure 19
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is the set whose members are 1, 2, 3, 4, and 4, and 4. There is a
passage in Winnie-the-Pooh* where Pooh keeps saying, ‘Oh, and
Eeyore. I keep forgetting about him,” when Rabbit is listing the
inhabitants of the forest. Despite being meationed several times,
there is only one Eeyore in the forest. In the same way, although
we may list the number 4 several times, there is only one 4 in the
set; which is thus equal to {1, 2, 3, 4). When using the curly
bracket notation, elements listed more than once are thought of as
occurring once only in the set.

Again, there is no particular order to the objects in a bag. The
curly-bracket notation introduces an artificial ordering because of
the convention that we read from left right. The set {1, 3, 2, 4} has
the same elements as {1, 2, 3, 4}, so is the same set. The order
inside the brackets makes no difference.

'You may ask, ‘But what if I want to put fwo pencils in the set?’
If they are different pencils, there is no problem: put them both in,
Since they are different, you are not putting anything in twice, just
two similar objects once each. If they are the same, you haven't got
two pencils.

These conventions are eminently reasonable. If your name
appears twice on the electoral roll, does that entitle you to two
votes? Does the order on the roll carry any electoral privileges?

More generally, a symbol such as

{all epic poems}
denotes the set of all epic poems. A variation of this idea allows
us to write
{x | x is an epic poem}
for the same set. The vertical bar may be read as ‘such that’; and
the set of all x such that x is an epic poem is the same as the set of
all epic poems. The set
{n|nisanintegerand1 <n <4}
is the same as the set
{1,2,3,4.

Instead of a list, we give a property which specifies precisely the
elements we wish to be included in the set. If we are careful with
our definitions, making sure that we specify the exact property we
want, this is as good as a list, and is usually more convenient. For
sets with infinitely many members, such as {all whole numbers}, it
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is in any case impossible to give a complete list. The same is true
for sets with a sufficiently large finite set of elements.

The word *collection’ has unfortunate overtones (which is why
we introduce the word *set’). The mathematical notion of a set
allows sets with only one member - or even no members at all -
whereas ‘collections’ usually have lots of members. If you were
asked to look at a stamp collection containing only one stamp you
might feel unimpressed. (On the other hand, if that stamp were
a certain one-cent black-on-magenta British Guiana stamp of
1856, of which only one copy is known . ..) Now if we specify
a set by some property it may turn out later that there is only one
object with that property, or none at all. But often this is not
apparent when the set is specified; and it would be stupid to have
“sets’ floating around which might or might not, on looking hard
enough, actually be sets. Thus {n | n is & whole number greater
than 1 such that the equation x*+y* = z* has a solution in non-
zero integers x, y, z} has at least one member, namely 2. But
nobody has any idea whether or not it has any more, It is a very
difficult problem in number theory® which has been unsolved for
over 300 years. Whether or not this is a set should not have to
depend on solving the problem; but it may turn out that 2 is the
only member. So we must allow sets to have only one element, if
that’s what turns out to happen.

Sets with one element must not be confused with the element
itself. It is not true that x and {x} are equal. This is easily seen
using bags (Figure 20):

'
x {x}

Figure 20
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and is confirmed by the observation that {x} has just one member,
namely x, while x may have any number of members depending
on whether or not it is a set, and if it is, which set.

The Empty Set

For exactly the same reasons that we allow sets with just one
clement, we have to allow sets with no elements at all. The set of
all unicorns at present residing in Bexhill is, to the best of my
knowledge, such a set.

A set with no elements is called an empty set. (Think of an
empty polythene bag.)

A fact now emerges which many people find surprising: there
is only one empty set. All empty sets are equal. Perfect democracy
prevails. Recall that two sets are equal if they have the same mem-
bers. If they are unequal, then they do not have the same mem-
bers, so one of them must have at least one member that the other
does not have. In particular, one of them must have a member.
If they are both empty, this is not the case; so they are not un-
equal. Therefore they must be equal.

This may seem _odd. It is an example of ‘vacuous reasoning’,
where the desired property holds, as it were, by default. Often
trivial ideas are hard to grasp. One assumes one is looking for
something substantial when in truth there is nothing there, and so
one believes that one has failed to see what one was looking for.
Any two empty sets are equal because, in the absence of any mem-
bers to distinguish them by, there is no way to tell them apart.
The contents of two empty bags are identical.

A sugar mouse has no members. Am I asserting that a sugar
mouse is equal to the empty set?

Indeed I am not. The proof applies only when we have two sets.
The best I can say is that {fa sugar mouse is a set, and if (as scems
likely) it has no members, then it is equal to the empty set.

Having established that there is just one empty set we can give
ita symbol: the current one being

[]
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which is not a Greek phi (#) but a special symbol concocted from
a ‘0’ and a */°. The empty set is not ‘nothing’; nor does it fail to
exist. It is just as much in existence as any other set. It is its mem-
bers that do not exist. It must not be confused with the number 0:
for 0is a number, whereas @is a set.*

9 is one of the most useful sets in mathematics. One of its uses
is to express concisely that something does not happen. Let U
denote the set of unicorns in Bexhill. Then

U=90
tells us that there are no unicorns in Bexhill,

Subsets

Often one set is part of (as distinct from a member of) some other
set. The set of all women is part of the set of all human beings;
the set of all even numbers is part of the set of all whole numbers.
Again the phrase ‘part of* has unfortunate connotations, and
mathematicians have been forced to invent a new word to denote
the precise concept involved.

A set S is said to be a subset of a set T provided that every
member of S is a member of 7. Every member of the set W of all
women is a woman, hence a human being, hence a member of the
set H of all human beings. So W is a subset of H. We use the
notation®

WS H
to describe this, so the symbol & should be read as ‘is a subset
of*. We also say that W is contained in H.

A ‘bag’ picture for the concept ‘subset’ is more contrived than
our earlier examples. If S is a set consisting of a pencil and an
eraser, while T consists of the same pencil and eraser, plus three
marbles, then the arrangement of bags in Figure 21 is decidedly
misleading.

It looks as if we have just one set, whose members are

(i) three marbles,
(ii) a set whose elements are a pencil and an eraser.



Figure 21

Figure 22 is a better picture; but to get this working practically
one needs an arrangement of interpenetrating bags. (These are
indicated by dotted lines.)

Certain facts follow at once from our definition of ‘subset’.
Every set is a subset of itself - because all of its members are mem-
bers of it. Further, the empty set 0 is a subset of any set you care
to name - by another piece of vacuous reasoning. If it were nota
subset of a given set S, then there would have to be some element
of @ which was not an element of S. In particular there would have
to be an element of @. Since @ has no elements this is impossible.
(These are two reasons why the phrase ‘ part of* is misleading: the
part may be the whole thing, or it may be empty.)

One nice property of subsets is that a subset of a subset is itself
asubset:if A € Band BS Cthen 4 S C. For if every element
of A is an element of B, and if every element of B is an element of
C, then every element of A is an element of C.
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Our remarks about the ‘systems’ of numbers at the start of
Chapter 3 is really about sets and subsets. We introduce some
standard notation® for sets of numbers (which we shall use con-
sistently throughout). To remind you that it is standard, we use
bold type.

Nis the set of whole numbers 0, 1, 2,3, . ...

Zisthesetof integers... —2, —1,0,1,2,....

Q is the set of rational numbers (of the form p/q where p
and g are integers and ¢ # 0).

R is the set of real numbers (representable by infinite deci-
mals, not necessarily recurring: numbers like 4/2 or x).

C is the set of complex numbers (which we won’t use much,
but it should be mentioned here).

These sets are among the ‘systems’ mentioned. The ‘grand

scheme’ into which they all fit can be expressed as:
NcZcsQsRecC

By the above remark it follows that N € Q, or that Z < R, and

the like.

It is important not to confuse S with €. The two concepts have
little in common. The subsets of {1, 2, 3} are the sets @, {1}, {2},
{3} {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. The elements of {1, 2, 3} are
1, 2, and 3. Further, it i8 not the case that if A € Band B € C then
AecC.”

Unions and Intersections

Sets may be combined together to give other sets. Out of a con-
ceivably infinite number of possible ways of combining them, a
very small number have been found useful. Prominent among
these are the union and intersection of sets.

The union of two sets S and T is the set whose elements are
those of S, together with those of 7. We use the symbols

SUT.
Thusif S = {1,3,2,9}and T = {1, 7, 5, 2} then
SuT={1,3,2975}
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If
P = {all women under 35 years of age}
Q = {all bus-conductors}
then P U Q will be the set of all people who are either women
under 35 years of age, or bus-conductors (including those who
are both).
In a similar fashion the intersection
SNnT
is the set whose members are the elements which are common to
S and T. In the above examples we have
SNT={,2}
P N Q = {all women bus conductors aged under 35}.
‘With polythene bags, and the two sets S and T of Figure 23

then S U T is the set obtained by putting all the objects into a
single bag (Figure 24)

oéé\@.@

Figure 24
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while § N T consists of the objects which lie in both bags simul-
taneously (Figure 25).
]

4

Instead of drawing the bags from the side, we might instead use
a top view (Figure 26).

Figure 26

Then S U T and S N T are the sets of objects in the shaded
regions of Figure 27.

SuT SaT

Figure 27

Now we can forget about the contents of the bags. A general
picture of S U Tand S N T, for any two sets S and T, will be as
shown in Figure 28.
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®© @

SuT SaT
Figure 28

Diagrams like these, with circles to represent bags (i.e. sets)
and shading to indicate where the relevant objects (clements) lie,
are known as Venn diagrams after their inventor.

The symbols U and N® obey various general laws, in the same
way that addition and multiplication of numbers obey certain
general laws. For example, whatever sets we take for 4 and B, itis
always the case that

AUB=BuA

ANB=BnNA.
For A U B consists of all the elements of 4 and all the elements of
B, which is the same as all the elements of B and all the elements
of A. If you draw a Venn diagram, then 4 U Band BU 4 are
both the region obtained by shading in both circles representing
A and B. Similarly for A N B, only now the region will be that
common to 4 and B.

If A, B, Care any three sets, then
(AUB)UC=AUVUBUO
(ANB)NC=ANnBNO).

The first of these says that if we combine together the elements of
the three sets, it doesn’t matter in which order we do it; the second
that if we take the elements common to all three sets, again the
order is irrelevant. You could draw the Venn diagrams: this time
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you will need three overlapping circles. I'll illustrate the method
on yet another law.
Thereare two laws which connect together the operations LU and
. For any three sets 4, B, C, we have
AUBINC=ANC)UBNCO)
ANB)UC=(AUVC)N(BUO).
The first of these is shown by the Venn diagrams of Figure 29,

® & @

(AuBInC

@@@

BaC {ArC)u(BaC)
Figure 29

Instead of using Venn diagrams to demonstrate set-theoretic
laws, we could use membership tables.® An element isin S U T if
itisin S, orin 7, or both. Itisin S N Tifitisin Sand in T. If
we write ‘I’ for ‘in’ and ‘O’ for ‘out’ these remarks can be
summed up by two tables:

S T|suT S T|SAT
I 1 1 I 1I 1
10 1 I o] O
[ I ¢ 1 oI (o]
oOo0| O 00| O

(For example, the third line in the S U T table reads: ‘If
element is out of Sandin T, thenitisin S U T°.)
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To prove the second of the above laws connecting U and N,
ANnBUC=(AUC)N(BUO),
we consider the eight different possible ways elements can bein or
out of 4, B, and C; for each of these we tabulate whether or not it
isthenin,oroutof,(4 N B)u Cand(A U C) N (BU C).

A B C|AnB (AnB)UC

111 1 1

I10 I I

1 01 (o] 1

1 o0O0| O (o]

o111 [o] 1

o110} O (o]

001 (o] 1

0O0O0| O (o]
And
A B C|l(AuC) (BUC) (AuC)NnBUO)
111 1 1 1
110 I I I
I 01 1 I 1
1 OO0 1 (o] (o]
[0 S | I ¢ 1
oOI1oO0 (o] 1 (o]
001 I 1 I
00O (o] (o] [o]

Notice that the two final columns are the same. So an element is
in(AnB)uCifitisin (4 UC) N (BuUO), and is out of
(4 n B) v Cifitis out of (4 U C) N (B U C). But this implies
that the two sets are equal, and proves the result.

With Venn diagrams (once you understand in what way they
represent general sets) you can see why an identity is true. With
membership tables you can prove it.
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Complements

Another useful method of combining two sets 4 and B is to take
their difference

A—B
which consists of those elements which are in 4 but pot in B. In
a Venn diagram it looks like Figure 30.

A B
A-B
Figure 30
The corresponding membership table is

A B| A-B
I 1 (o]
I O 1
o1 (o]
O 0| O

The complement S’ of a set S is the set of all elements which do
not belong to S. If we let V¥ be the set of all possible elements —
everything, of any kind, which could be a member of some set —
then §' = V—S. So S’ is represented by the shaded region in
Figure 31

Figure 31
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I find this set ¥ somewhat daunting to contemplate. It con-
tains so many things! All possible numbers, dogs, cats, people,
books, . . . all possible concepts . . . , all sets. In fact, since Visa
possible element, ¥ is a member of V. In many respects V is oo
large. In a discussion about dogs, if one wishes to talk about all
non-sheepdogs, it is pointless to worry about camels.

In any particular problem, the sets one is concerned with often
lie inside some reasonably small universal set. If we are talking
about dogs, we could take our universal set to be the set of all
dogs. It might be more convenient instead to use the set of all
animals. There is no fixed way of choosing a universal set. But
once we have chosen one we can use it instead of ¥. The comple-
ment S’ will consist of those elements of the universal set which
are not in S; that is, those things of the type we are considering
which do not lie in S. As long as we know which universal set we
are dealing with, no ambiguity arises.

Taking complements reverses inclusion relations between sets.
If S € Tthen T' < S'. This is because, if there are more things in
T than in S, then there are fewer things not in T than there are not
in S. It is obvious from a Venn diagram (Figure 32).

Figure 32

Taking complements of sets is closely related to negating state-
ments. We can use set theory to solve certain kinds of logical
problems. Consider this list of statements:

(i) Animals which cannot be seen at dusk are grey.

(ii) The neighbours do not like things that keep them
awake.
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(iii) Anything that sleeps heavily snores loudly.
(iv) The neighbours like animals which are visible at dusk,
(v) All elephants are heavy sleepers.
(vi) Anything that snores loudly wakes the neighbours.
‘We can turn these into set-theoretic statements, by putting
A = the set of things that wake the neighbours,
B = the set of things that sleep heavily,
C = the set of things that snore loudly,
D = the set of animals that are visible at dusk,
E = the set of elephants,
F = the set of things liked by the neighbours,
and G = theset of grey things.
Then statement (i) says that anything not in Dis in G, that s,

@ D <G
Similarly the other statements become
(i) ACSF
(iii) Bc C
@iv) DS F
W) Ec B
(vi) Cc A

Taking the complements of D and F, we can deduce from D S F
that
FcD.
Now we can string all the statements together:
EcBSCcSAcSFcDcG
and since a subset of a subset is a subset, these imply that
EcG,
i.c., all elephants are grey.

There is much more to the connection between set theory and
logic. The idea was first thought of by George Boole (1815-64),
and the consequent theory is known as Boolean algebra.*®

Using complements we can explain a phenomenon which you
may have noticed already. The various set-theoretic identities, or
‘laws’, seem to come in pairs. If I take a law involving the signs
L and N, and turn all the Us into Ns and all the Ns into Us, the
result is another law. The laws mentioned in the section on unions
and intersections were in fact written down in such pairs.
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This is no accident. It is a consequence of two more identities,
known as De Morgan’s Laws: for any sets A and B, we have
(AuBY =ANF
(AnBYy=AUBPB.
Even these come in pairs. Now anything not not in a set Sisin S,
and conversely; 50 S* = S. So we can rewrite these as
AUB=(A'NnPBY ®
ANB=(A'"UBY).
Take any set-theoretic law, such as
(AUBINC=ANCOUBNCO).
Change all the As, Bs, and Cs to their complements, obtaining
AUBYNC=ANCHu@B' NC).
This is also a law, because the first equation is true for any sets
A, B, and C. Now take complements of both sides:
(@UB)NCY=((A nCYuB NC)
and use De Morgan’s laws, as rewritten in (), to simplify. The
left-hand side becomes
AuByucC
which on further application of (}) is
AnBuUC.
(You must remember that A” = A4, B* = B, C’ = C.) Similarly
the right-hand side is
AnCYn@BnCy

MulC)n(BUC).
So we have shown that
ANBUC=(AUVUC)NBUO),

which is the original law, with Us and Ns interchanged. The same
method works for any law which involves only unions and inter-
sections,

In consequence, our work in proving theorems is halved: for
every theorem we prove we get a second free of charge.

or

Geometry as Set Theory
Euclid makes an attempt to define certain basic geometrical
objects, such as ‘point” and ‘line’. For instance, a point is sup-
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posed to be something that has position but no size. If you analyse
the idea of ‘position’ it turns out to be as difficult to define as
‘point’; and the two concepts chase each other round in circles.

Now any definition must start somewhere. The dictionary de-~
fines ‘the’ as ‘ the definite article’.!! If you didn’t know what the’
meant this would not be very helpful! Euclid tried to relate his
idealized points and lines to objects in the physical world. Un-
fortunately nothing in the real world behaves exactly like his ideal
objects. Even very small sub-atomic particles have some size.
(Indeed, if quantum theory is right, the whole idea of size becomes
bazy for very small distances: it is physically impossible to
measure distances smaller than, say, a trillionth of a centimetre.
To do so would require so much energy that you’d blow what you
were measuring to bits.) One way round this is to take the basic
ideas of point and line as undefined terms, and thea state how you
wish them to behave. This is the modern version of the axiomatic
method, and I shall have more to say about it in Chapter 8.

The notion of a plane composed of individual points is an ap-
pealing one. Another way to make it logically sound is to define
‘plane’ and ‘point’ in terms of already known mathematical
objects. We cannot define anything which is a plane in the physical
sease, but we can define an object which behaves in the way that
an idealized Euclidean plane should behave.

As we remarked in Chapter 2, the ideas of coordinate geometry
allow us to label each point of the plane with a unique pair (x, y)
of coordinates. We now have a mysterious object ‘point’ asso-
ciated with a straightforward object *pair of real numbers’. The
straightforward object will do everything that we want the myster-
ious one to do. If we are unwilling to indulge in mysticism, we can
define a point to be a pair (x, ) of real numbers. The plane is com-
posed of all points; so we can define the plane to be the sez of all
pairs of real numbers,

What about lines? If you go back to coordinate geometry, you
will find that a line consists of those points (x, y) that satisfy an
equation of the form

ax+by=c
for fixed a, b, ¢, For example, 1.x+(—1).y = 0 gives the diagonal
line through the origin from bottom left to top right. We can
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define a line to be the set of all pairs (x, y) satisfying such an
equation. In the same way, the equation determining a circle can
be used to define a certain set of points, which corresponds to the
geometrical idea of a circle.

A point lies on a line, geometrically, if it is a set-theoretic mem-
ber of the line. So a point lies on two lines L and M if it is a mem-
ber of L and a member of M, in other words, if it is a member of
the intersection L N M. Set-theoretic intersection corresponds to
geometrical intersection.

Proceeding in this way, using coordinate geometry as inspira-
tion, you can set up the whole of Euclidean geometry as a part of
set theory. From the way that you want geometry to behave, you
can construct a purely mathematical theory. But now, instead of
indulging in deep metaphysical arguments about the ‘real’ geo-
metry, you can say: here is a mathematical theory. It deals with
things which I call *points’ and ‘lines’. I suspect that in the real
world very small dots and very thin lines will behave in approxi-
mately the same way. And then people can go away and do ex-
periments, to see if you are right. And even if it turns out that with
very exact measurements you are wrong, you will still have a nice
theory.

1 now want to generalize the idea of pairs of numbers. It is im-
portant to notice that the pairs we used above are ordered, that is,
the pair (1, 3) is not the same as the pair (3, 1). Draw them on a
sheet of graph paper. (This is in contrast to the unordered pairs
{1, 3} and {3, 1} provided by taking sets; these are equal, as we
agreed earlier.)

Given any two sets 4 and B we can define!2 ordered pairs (a, ),
wherea € Aand b € B. ‘Ordered’ means that
(@, b) = (c,d)
if and only if @ = ¢ and b = d. Then we can define the Cartesian
product
AXB
to be the set of all possible ordered pairs (a, ), where a € 4 and
be B. (The name is in honour of Descartes, who invented
coordinate geometry.)
Suppose that 4 = {A, O, O} and B = {£, §}. We can picture
A x Basshown in Figure 33.
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G5 o
A% (0.4 (0,£)

Qb o oh

B AxB
Figure 33

Noticethat 4 X Bis notthesame setas B X A. The latter contains,
among others, the clement (£, A) whichisnotin 4 X B.

If we recall the notation R for the set of real numbers, then the
plane, as defined above, is the set R xR, It is customary to use the
simpler notation R2. All of Euclidean geometry can be thought of
as a study of the subsets of R2,



Chapter 5 What is a Function?

In elementary mathematics one comes across various objects
designated by the term function: the logarithmic function, the
trigonometric function, the exponential function. What these have
in common is that for any number x the function takes a well-
defined value, namely log(x), sin(x), cos(x), tan(x), €*, and so on.
One also learns how to draw graphs representing functions, by

AN
AN/
- [fon

Figure 34
plotting the value of the function at x against the value of x.
Figure 34 illustrates this for four common functions.

In traditional terminology x is the variable; and the function
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assigns to each value of the variable x another value y. If the
function is denoted by some symbol such as f, we write

¥y =f(x).
If fis the function ‘log’ then y = log(x); if fis the function ‘sin’
then y = sin(x).

Neither y nor x are functions. In fact it is very difficult to say
exactly what they are. And f(x) is not a function either, because
it is the value of the function at x. It is f that is the function. The
‘variables’ x and y exist only to tell us what f does. The function
‘square of’ takes the value x2 for any given value of x. This can
be expressed briefly by the formula

y=x
but without being told in advance you would not be certain
whether this formula was the definition of a function or an
equation to be solved.

On Formulae

Most of the functions one meets in school mathematics can be
defined by a formula: y = x2, y =+/x, y = |x|, or more com-
plicated ones like
y= 7r+’:':_(")
This encourages a belief that mathematics is formulae; that the
object of a mathematician’s life is to produce more and more
complicated formulae and to use these to perform more and more
difficult calculations. This is not so. Worse, a blind manipulation
of formulae, without understanding what you are doing, can lead
you into making any number of silly errors. The example I want
to give involves calculus, but it is not used in any essential way
and anyone who doesn’t know calculus should still be able to
follow.

I have in the past set classes the task of differentiating the
function

y = log (log (sin (x))).

If you follow blindly the standard rules of the calculus, you will
obtain the answer



What is a Function? 65

L
log (sin (x)) ‘sin (x)
cot (x)

log (sin (1))’
Most members of the class were happy with this. I then asked
them to sketch the graph of log (log (sin (x))). This caused great
consternation, because it revealed that the formula didn’t make
any sense. For any value of x, sin (x) is at most equal to 1, so
log (sin (x)) < 0. Since logarithms of negative numbers cannot be
defined, the value log (log (sin (x))) does not exist; the formula is
a fraud.

On the other hand, the ‘derivative’ cot (x)/log (sin (x)) does
make sense, for certain values of x; namely those where
sin (x) > 0.

Some people might enjoy living in a world where one can take a
function which does ndt exist, differentiate it, and end up with one
that does exist. I am not one of them.

A given formula may not make sense for certain values of the
variable x. Thus 1/x is not defined when x = 0, log (x) is not de-
fined for x < 0, and tan (x) is not defined for x an odd multiple
of 90°. More complicated formulae can go wrong in more com-
plicated ways; thus

log (x*—1)
x2—5x+6
isnotdefinedif -1 <x<l,orifx=2,0rifx =3.

Again, there are many useful functions which are not easily
definable using formulae. (A question which arises here is: which
kinds of formulae? The function ‘sine’ is not definable by for-
mulae unless you invent a new symbol *sin’.) For many purposes
in mathematics we need functions like the integer part [x] de-

fined by
[x] = the largest integer < x.
Or we might want a function such as that shown in Figure 35,

defined by
{(x+l)’ ifx < —1,

or

f(x) = {0 if-1<x<1,
(x—1)* ifl <x
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e,

In the theory of Fourier analysis one encounters functions like
the square wave (Figure 36).

Figure 36

For years mathematicians debated whether or not this wasa
function. It didn’t look like any of the familiar functions, and there
scemed to be no formula for it. The problem got worse when
Fourier showed that the infinite series

sin (x)+#% sin (3x)+1 sin (5x)+. . .
could be summed to give a square-wave function. For now we
bave the nice, homely trigonometric functions giving birth to a
weird creature with corners!

The ensuing squabble took a century or more to settle. In part
this was because the problem ‘Is this a function?’ was jumbled up
with others, like ‘What is an infinite series?’, but mostly it was
because every mathematician had his own idea of what functions
ought to look like, and coukdn’t agree with anybody else.
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More General Functions

‘We have seen that a function fneed not be defined for all values of
the variable x. If f(x) is given by a formula, that formula does not
necessarily make sense for all x.

The values of x for which the function is defined form a subset
of the set R of real numbers. This set is called the domain of f, and
it tells to which values of x the function fcan be applied.

From all the properties common to the examples of functions
above, we single out one as being of overriding importance: the
value of {(x) is uniquely specified for every element x of the domain.

As well as the domain, there is another set associated with a
function, and known as its range. This consists of all the possible
values that the function may take, when evaluated on elements.of
the domain. The range of the function ‘sin’ is the set of real num-
bers between —1 and 1. The range of the function ‘square of” is
the set of positive reals.

The range of even a simple function may be very complicated.
The function f whose domain is the set of positive integers and
which satisfies

fGx)=v)

(positive square root) has as range the set of all square roots of
factorials. It is hard to give a more helpful characterization than
that!

For this reason we are less interested in the precise range of a
given function. It is often more useful to have some description of
where the values lie, of a simple nature. Any set T such that all
values f(x) lie in T will perform this role. Such a set Tiscalled a
target for f; and we say that fis a function from the domain D into
the target T.

A function, then, consists of three things:

(1) a domain D,

() atarget T,

(3) a rule which, for every x € D, specifies a unique clement
Sf)of T.

Item (3) is the heart of the matter.
It is important that f(x) be uniguely defined, so that there is no
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ambiguity attachied to it. Taking square roots does not define a
function unless we specify whether we want the positive or nega-
tive square root. It is also important that it be defined for every x
in the domain, in order that knowledge of the domain may tell us
when it is safe to use /. It is not particularly importaat to know the
exdct range of - often this is very hard to work out, and we want
to be able to use f without worrying about the problem ~- 3o we are
free to choose 7 'in as convenient a way as we like.

The only other term in (3) which requires explanation is the
word ‘rule’. For the moment I shall assume that we all know what
a ‘rule’ is: it is a way of working out f(x) given any particular x.
But to this I should add that it is sufficient if f(x) is in principle
calculable from x. In practice, the computations may be too hard
or take too long to be possible; they might depend upon solving
some very difficult problem.

So far, the domain and target have always been sets of real
numbers. But our conditions (1), (2), (3) make sense as long as D
and T are sets. Furthermore, rules of the type envisaged in (3) crop
up naturally in situations where D or T are not sets of real num-
bers. This remark is important for everything following, so I shall
give several examples.

(i) Let D be the set of all circles, T the real numbers, and
for any circle x define
f(x) = the radius of x.
(ii) Let D be the set of positive integers, T the set of all sets
of prime numbers; for any x € D define
f(x) = the set of prime factors of x.
(iif) Let D be a subset of the plane, let T be the plane
(thought of as the set R?), and for x € D let
f(x) = the point 5 cm to the right of x.
(iv) Let D be the set of all functions, T the set of all sets,
and for any function x define
f(x) = the domain of x.

In each case the rule which defines f(x) is unambiguous. Ex-
ample (iii) is particularly interesting. In Chapter 1 we define a
transformation T'by

T(x, y) = (x+5, ).
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This is the same rule that determines f; esseatially there is no
difference between Tand f.

The modern concept of “function’ is tailored to suit all of these
examples. From now on a fimction will be anything that satisfies
conditions (1), (2), (3), where D and T may be quite general sets.
Our carlier functions are then a special kind, namely those whose
domain and target lie inside the set of real numbers.

The function f with f(x, y) = (x+5, y) is an example of what,
in calculus, is known as a fincrion of two variables. So functions of
two variables also come under our general heading; for then the
domain will be a set of pairs (x, y) of real numbers, or a subset
of R2,

The function concept is a strong contender for the most im-
portant in contemporary, mathematics, because it has such a wide
range of applications. The idea of a function will turn up again
and again as we proceed, in many different guises. For this reason,
it is worth developing a few general notions about them.

Properties of Functions

If the domain and target are not subsets of R, it is not possible to
draw a graph of the function. Indeed the graphical representation
is not a very helpful picture for our generalized function concept.
A better way to think of functions is shown in Figure 37.

(o]

(o]

Figure 37
The arrows in this picture represent the ‘rule’ which tells us what
fx)is.
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The standard notation expressing the fact that fis a function
with domain D and target T is

fiD->T,
which uses the arrow in the same way.

In Figure 37 there is an element of T to which no arrow points,
The range of fis not the whole of T, If the range of 1 is the whole
of T, then fis said to be a function onfo! T. Another common
word for such a function is surjection (from the Latin: fthrows D
on to T). To put it in pictures, f is a surjection provided every
element of T can be reached by going along some arrow, as in
Figure 38.

It does not matter if, as is the case in Figure 38, certain elements
of Tlie at the end of more than one arrow. If every element of T
lies on at most one arrow (perhaps on none) then fis aw injection.
Injections need not be surjective (Figure 39).

If we have a function f: D —+ T which is both an injection and a
surjection, then the arrows pair off elements of D and T: an
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element of D at the tail end, an element of T at the head. No two
elements of D are paired with the same element of T, because fis
an injection. No two clements of T are paired with the same ele-
ment of D, because of the uniqueness clause in part (iii) of the
definition of function. Every element of D occurs, because D is the
domain; every element of T occurs because fis a surjection. Al-
though it is not apparent from the notation, the situation is per-
fectly symmetrical; and if we turn all the arrows round we define
another function

g:T—>D
in the opposite direction. And g is also both an injection and a
surjection. (See Figure 40.)

Functions which can be turned round in this way will play a
prominent part in some of our later investigations. They are
known as bijections, or as one-to-one correspondences.

There is nothing to stop you turning round the arrows if fis not
a bijection. But you won’t get a function. If fis not injective thea,
on turning round, some element of T will be at the tail end of two
different arrows, and the reversed ‘function’ is not uniquely de-
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fined. If fis not surjective, there will be elements of T for which
the reversed function is not defined at all.

In Chapter 1 we combined transformations F and G to give a
new transformation FG, corresponding to the idea ‘do G and then
do F. But transformations are a kind of function. Can we com-
bine functions in the same way?

Suppose we take two functions fand g, and try to define a func-
tion fg. As for transformation, we want

Jox) = f(g(x)
for the relevant x.

For this formula to make sense, several conditions must hold.
We can’t work out f((g(x)) unless g(x) is defined, so

(i) x must lie in the domain of g.
‘Then, to work out f{g(x)), we need to know that
(ii) g(x) lies in the domain of £,

Suppose then that f: 4 - Band g: C - D. The most we can hope
for is that f7 has domain C, because of (i). In order to define it on
all of C, (ii) must hold for all x € C. In other words, the range of g
must lie inside the domain A4 of £, If this condition holds then fg,
defined by the formula, will be a function from C into B. This is
illustrated in Figure 41.

Figure 41

The function fg corresponds to the idea ‘do g, then do /. If
we have three functions f; g, and A, and if their ranges and do-
mains fit together properly, we could do all three in succession:
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first h, then g, then f. There are two ways of accomplishing this by
combining functions in pairs. Either do 4 and then do fg, or do
gh and then do f. These correspond to the two expressions

(074 f(gh).
Fortunately these are always equal. It makes no difference in the
end if we do ‘h and then g-and-then-f” or if we do ‘A-and-then-g
and then f”. In pictures, we have Figure 42,

U__.i_;A

g

X———>0

fg

Figure 42

Or instead we could calculate:

(oMhix) = (fgX(h(x)) = Fg(h(x)),

f(ghXx) = f(gh(x)) = f(g(k(x))
Either way, we can see that always

(fodh = f(gh).
We say that our method of combining functions satisfies the
1 said above the we could combine f, g, and A, provided their
ranges and domains fit together properly. It is easy to see what
this means: the range of & must be a subset of the domain of g,
and the range of g must be a subset of the domain of /. Let’s go
back to the fraudulent formula
log (log(sin (x))).

This is obtained from a combination of the functions sin, log, and
log again. If we took 4 = sin and f = g = log above we would
have log (log (sin (x))) = foh(x).
The domain of sin is the whole of R; its range is the set of reals
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between —1 and 1. The domain of log is the set of positive reals;
its range is the whole of R. The conditions which allow us to com-
bine the functions are violated in several places: the range of
log is not contained in the domain of sin, and the range of log is
not contained in the domain of log. It is no wonder that the
formula did not make sense!

Finally, let us return to the idea of reversing arrows, and make it
mathematically respectable.

On any set D there is a function called the identity function,
denoted by 1,. It has domain D, range D, and is defined by

1p(x) =x
for all x € D. The effect of the function is to leave things un-
changed. Not a very useful function? Assuredly, it is not a very
difficult function. But it will be useful precisely when we wish to
express the fact that a certain combination of functions leaves
things unchanged.

We had, earlier, a bijection f:D — T. Turning the arrows
round gave another function g: T — D. To express this symbolic-
ally, we note that everything is left unchanged by doing first g and
then £ it travels up and down the same arrow. So

Jfa =1y
Similarly o
af = lp-
The equations (1) are a symbolic expression of the fact that fand
g can be obtained from each other by reversing arrows. We can
say that fis the inverse function to g (and that g is inverse to ). The
word ‘the’ is permissible here because it is easy to prove that
inverses are unique: there is only one way to turn arrows round.

Sammary

This chapter has been a little technical. The important points to
remember for the rest of the book are:

A function is defined on some set.
It takes values in some set.
It is defined if we know a rule which tells us how to find its
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value for a given element, and if this value is uniquely
specified.
Bijections, or one-to-one correspondences, are exactly
those functions which have inverse functions.
1 have not expanded here on the word ‘rule’: I have relegated

to the notes? a more abstruse definition of function in terms of
set theory, because it is of purely technical interest.



Chapter 6 The Beginnings of
Abstract Algebra

Early onin algebra you are asked to simplify algebraic expressions,
such as 2x+(y—x). Later on you get 30 used to doing this that
you just look at the expression, and the answer x+y presents
itself without further thought.

Familiarity breeds contempt. You forget just how many pain-
ful stages you had to go through, how many different ideas you
had to grasp, before this facility was acquired. If you try to write
out in detail the steps required to perform the simplification, you
will find that there are quite a lot of them. The way I simplified it—

‘analysed out’ - was this:
2+ (—x) = 2x+(y+(—x)) )
= 2x+((—x)+y) ()]
= (2x+(—x))+y 3)
= (2x+(—1x)+y @
= (2+(—-1))x+y ®)
=1.x+y ()]

=x+y. (Y]
Steps (1) and (4) are minor, amounting to the use of definitions of
—x or of y—x, and step (6) is just arithmetic. But each ot the
remaining steps uses the truth of certain general arithmetical
laws - perhaps it would be better to say algebraic laws. At step (2)
I assume that a+b = b+a. At (3) I use the law a+(b+c) =
(a+b)+c. Step (5) uses the law ax+bx = (a-+b)x, and step (6)
thelawl.x = x,
For the moment setting aside the laws relating to division, we
can list the more important ones:

(1) The associative law of addition:
(@+b)+c = a+(b+c).
(2) The commutative law of addition:
(a+d) = (b+a)
(3) The existence of zero:
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There is a number 0 such that a+0 = g = 0+-a for
any number a.
(4) The existence of additive inverses:
For any number a there is a number — a such that
a+(—a) =0 = (—a)+a.
(5) The associative law of multiplication:
(ab)e = a(be).
(6) The commutative law of multiplication:
ab = ba.
(7) The existence of unity:
There is a number 1 such that for any number g,
la=al =a.
(8) The distributive laws:
a(b+c) = ab+ac
(a+b)c = ac+be.

Although there are a lot of laws, this does not make algebra
complicated. In fact, the more laws there are, the easier things
become, because we have more ways to simplify expressions.

Even some of our algebraic notation relies on the truth of some
of the laws. The only reason we can write

a+b+c
unambiguously is because the associative law holds.

Most of elementary algebra consists of using these laws to prove
formulae (although it is not always presented in such a light). The

formula
(x+))? = x2+2y+y?
can be derived as follows. First note that for any number a we
define a* to be a.a, and 2a to be a+a. Second, note that a+b-+c¢
is a shortened form of (a+5)+c. Now proceed:
(x+y)? = (x+yNx+y) (notation)

=(xx+)+(x+»)  (aw8)

= (xx+xy)+(rx+yy) (law 8)

= (x2+xp)+(x+y?) (notation)

= (& +xp)+ Gy +»*) (law 6)

= ((*+x)+x)+»? (aw 1)

= (2 +0y+x)+»? (aw 1)

= (*+2)+y? (notation)

= x2+2xy+y? (notation).
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With a little more work, you could prove that the usual expan-
sions of (x+)?, (x+)*, hold good; or even give a proof of the
binomial theorem (for integer powers); all using only laws (1)-(8).

Rings and Fields

The ordinary systems of numbers (Z, Q, and R) are not the only
ones in which the laws (1)~(8) hold. They also hold (though I
won't give a proof yet) for the integers modulo 6, for example. To
take a few instances:
144)+3 =543 =2 =1+7 =1+4+3)
2.5=4=5.2
1.4=4=4.1
32+5) =3.1 =3 =0+3 = (3.2)+(3.5).

In consequence, the formula for (x+y)* will also hold for the
integersmoduloG,becauseonlths(l)-(S)we:eusedtodeﬂve
it.

There is nothing special about 6 here. The integers modulo
2,3,4,5,6,7,...,infactmodulonformyu,al:osaﬁ:fy(l)—(s).
The formula for (x+y)? holds for these systems too, and has the
same proof.

Mathematicians are lazy creatures at heart. The labour of
writing out a proof of the formula for each system of integers
mod 2, mod 3, mod 4, mod 5, . . . , seems too great to justify the
mﬂu,parﬁwhﬂywhentheproofisthesamemyﬁm.%y
notagteethnttheptoofwﬂlworkforanysystemwhichsaﬁsﬁes
(lHS)?Tomakemmdeam,whynotaive:mmetom
gystems, so that we can avoid listing all eight laws every time?

The name currently in vogue is: commutative ring with unity.
This is a trifie cambersome. A ring is any set S having two opera-
tions + and . defined on it, such that if s and ¢ lie in S then s+¢
and 5. also lie in S, and such that laws (1)-(5) and (8) hold.
(Here st is to be interpreted as s.7.) The ring is commutative if (6)
also holds. It has a unity if (7) holds. The shortest name ‘ring’ is
used for the object most frequently encountered. But in this book
we won’t encounter any non-commutative rings, because our
source of examples is too limited.
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The use of symbols x+y and xy for ‘addition’ and ‘multi-
plication’ in the ring is just a convention - though a useful one!
If instead we had used (] and 5, we would want the corresponding
laws to hold: law (8), in this form, would read

ad>(®0c)=(@ab)0O(as¢)
@Oboc=(@ac)O o0

The underlying set S of a ring need not be a set of numbers.
Even for the integers mod 7, where S is the set {1, 2, 3,4, 5, 6, 0},
the elements are not really numbers; in fact it doesn’t matter what
they are as long as we use the tables on pages 31 and 32 to define
addition and multiplication. Again, we might take any set 7, and
put

S = {all subsets of T}.

We define, foraand b € S.
atb=@ub—@nb)
ab=anhb.
(See Figure 43.)

o ®

Itis now a long but elementary exercise in set theory toshow that
laws (1)~(8) hold for these operations on S. The empty set @ plays
the part of 0in law (3), while T does for 1 in law (7). The two sides
of (1) are both represented by Figure 44.

What will x2 be in this ring? Recall that x? = xx. The elements
of xx are those which lie in both x and in x: in other words,
those in x. So xx = x. The ring has the curious property that
x2 = x for every element! If we took T'to be a set with n elements,
then S has 2" clements; and we have a ring in which the quadratic
equation

Figure 43

x2—x=0
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Figure 44

has 2" solutions. If T is an infinite set, then the equation has
infinitely many solutions!

We said that in any ring it is always true that (x+y)? =
x242xy+)3. If every element satisfies x2 = x this reduces to

x+y = x+2xy+y
from which - using, incidentally, laws (4), (1), and (3) - it follows
that
2y =0
for any x, y. Actually, more is true. For any element x of S we
have
X =x+x=(xUX)—-ExNX)=x—x=0=0.

So certainly 2xy = 0. Although the ring has several very peculiar
properties, the formula for (x+y)* does not lead to any in-
consistencies.

The branch of mathematics known as ring theory consists of
deductions from laws (1)~(5) and (8): those theorems which are
true of all rings. If in the course of his work a mathematician
chances upon a system satisfying all these laws he says ‘Aba! a
ring!” and knows that from this observation a certain body of
standard properties will follow. (Seldom does this solve all his
problems.)

If we bring in division, two more laws become important.

(9) The existence of multiplicative inverses:
If a # 0 there exists an element @~ such that ag=! =
1=a‘a
(10) 0 # 1. (This is just to exclude certain trivial systems.)
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A set S having operations of addition and multiplication which
satisfy laws (1)-(10) is called a field. The results of Chapter 3 about
reciprocals show that the integers modulo 7 form a field if and
only if 7 is prime. There are therefore plenty of rings which are
not fields; forexamplethemtesetsmodnwhenmsrmpnme.

Historically the notions ‘ring’ and ‘field” arose from the study
of algebraic numbers: numbers satisfying a polynomial equation,
such as x2—2 = 0, or 17x23—5x%+439 = 0. The first is satisfied
by +4/2 (I have no idea about the second!) and at a certain stage
in the theory it is helpful to look at all the numbers a+b+/2 for
integers a and b. Because

(a+bv/2)(c+dv/2) = (ac+2bd)+(ad+bc)/2
it turns out that these form a ring.

If instead we allow a and b to be rational then we can find
inverses:

PR _—=b_
@by ( a,_w) + ( a,_w)w,
So now we have a field. Deep properties of algebraic numbers
have been found by using ring theory and field theory. In par-
ticular this applies to the modern treatment of the insolubility by
radicals of the general equation of degree 5.1

Application to Geometrical Constructions

A proper study of the quintic equation would take us too far
afield, but we can illustrate some of the ideas involved on a
problein which uses less machinery.

A famous problem of Greek geometry (often cast in the form of
a legend involving an oracle at Delos?) asks for a geometrical
construction of a line of length ¢/2, given a line of length 1. The
construction is to be performed under the Platonic restriction to
ruler and compasses alone. The Greeks could not find a solution
(although they did find one using conic sections).

'We will show that no such construction exists.

Given lines of lengths r and s it is possible to construct lines of
lengths r+s, r—s, rs, and r/s by the methods shown in Figure 45.
(We assume a line of length 1 is given, to fix the ‘scale’.)
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r s r
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Figure 45

The set K of constructible lengths is a subset of the set R of
real numbers. We have just seen that in K we can add, subtract,
multiply, and divide; from which it is easy to show that Kis a
field. We can say that K is a subfield of R.

Another thing we can do inside K is take square roots of
positive lengths, This follows from Figure 46.

Figure 46

If we start with a given length 1 then using the constructions of
Figure 45 we can construct lengths 2, 3,4,...4,4,4,...,andin
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general all rational lengths. Then, for any rational number r, we
can construct 4/r, as in Figure 46. Then we can get all the lengths
of the form

ptavr
for rational p and ¢. The set of all such numbers forms a field, call
it F;, because we can define inverses by

(+gvn)~t = (y’fm’)+(p':341)\/"

a formula generalizing the one given for p+¢+/2.

Now we can start again. Pick an element s € F;, construct 4/s;
then construct all numbers p+-¢+/s for p, ¢ belonging to F,. This
gives a larger field F;. Repeating the process on F; we get a field
F,. In general we get an increasing series of fields:

Qe FsFRcFhcs...cFcFuS...
and we can construct any length in any F;.

Are there any other constructible lengths? Of course, we could
pick different elements 7, s, . . . when taking square roots. But this
still leads to a similar series of fields. Are there any not obtainable
by our procedure?

Any geometrical construction can be broken down into a
sequence of steps of three kinds:

(i) finding the point of intersection of two lines, whose end
points are already constructed;

(i) finding the point(s) of intersection of a line and a circle,
where the ends of the line, the centre of the circle, and a line
of length equal to the radius of the circle, are already con-
structed;

(iii) finding the point(s) of intersection of two circles,
whose ceatres are already constructed, and whose radii are
equal to lengths already constructed.

Analysing these by coordinate geometry, one finds that step
(i) only brings in lengths which can be obtained from those al-
ready found by addition, subtraction, multiplication, and divi-
sion. Steps (i) and (jii) bring in square roots of known lengths as
well, but nothing more. So every constructible length lies in one of
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our fields F, for suitable choices of r, s, . . . when we take square
roots.

Now we come to the problem of constructing /2. If this is
possible, then /2 must lie in one of the F,. Now it does not look
as if 4/2 can be expressed using only square roots: but perhaps
appearances are deceptive. Are you sure that there may not be

some complicated expression, perhaps
3IHVE+6vD—V13
which is equal to /27

This certainly seems unlikely, because of the cube root. Cube
must be exploited.
First we prove that /2 is not a rational number. The proofis a
variation on a standard proof that /2 is not a rational number.
Suppose, on the contrary, that {/2 is rational, so that there are
integers c, d with
Y2 =c/d
It is possible that ¢ and d have some common factors: if so we
cancel these out. Either way we can find integers e, f without
common factors such that
Y2 =cff.

Cubinxmdmﬂﬁplyhzbyf;ﬁm:\’s
Therefore ¢* is even. The cube of an odd number is 0dd, so e can-
not be odd: therefore e is even. So there is an integer g such that

e=2g.
Then
A = =) =85
so that
£ =49

Therefore /2 is even, and by a similar argument £ is even. So there
is an integer A such that
f=2h.

But now we see that e (=2g) and f (= 2h) have the common
factor 2. But e and f do not have common factors!

If e and f exist, they have self-contradictory properties. There-
fore they do not exist. Therefore ¢ and d don’t exist: and it
follows that {2 is not a rational number.
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Assume, for argument’s sake, that {/2 can be constructed. We
have just seen that it isn’t rational. So it must lie in some field F,,
with corresponding choice of elements 7, s, . . . . There is no harm
in taking this k to be as small as possible.

Let us write x = /2. Since x € F, it follows that

x =p+qv't ®
where p, ¢, and ¢ lie in F;_,, but 4/ does not. (If /¢ did then
F, =F,_,, and 80 x € F;_,, contradicting our choice of the
smallest k.) Now x satisfies

x3-2=0.
Substituting from () we find that

a+byt =0

where

a = p*+3pg*t—2 b = 3p%q+qt.
This means that a and b must both be zero. Because if b # 0 we
would have

vt = —alb
which lies in F;_,. But we have just said that /¢ does not lie in
F,_,.S0b = 0. Consequently a = 0as well.

Now consider the number

y=p—gvt

Yy —2=a-byt
with g and b as above. But these are both 0, so that
»*—2 =0also.
This means that y is another cube root of 2. Now x and y are both
real numbers; and there is only one real cube root of 2. The only
possibility left is that x = y; and even this is not much of a pos-
sibility, because then

You will find that

pHevt=p—qvt
so0 that ¢ = 0. From () we then have x = p, but p lies in F,_,.
So x lies in F;_,. But again this contradicts our explicit choice of
the smallest possible k.

With meticulous logic we have crashed headlong into a contra-
diction. The only dubious item is our assumption that x = /2
can be constructed, so this must be the source of our troubles: we
can avoid a contradiction only if /2 cannot be constructed. This
must therefore be the case.
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Other problems about geometrical constructions may be solved
in similar ways. Trisecting the angle 60° boils down to construct-
ing x such that
B—3x=1

and a similar argument proves this impassible. ‘Squaring the
circle’ implies constructing x = x. Because the numbers in F; are
obtained by taking only square roots, it can be seen that they
must satisfy some polynomial equation

ax"+a,_1x*"'+...tayx+a, =0
whose coefficients g, are all rational. A famous and difficult
theorem of Lindemann? asserts that x satisfies no such equation,
So the circle cannot be squared.

In this connection the problem of constructing regular poly-
gons should be mentioned. The construction of the n-sided regular
polygon is intimately bound up with the polynomial equation

4, x4l =0,
A deep analysis of this shows that the regular »-gon can be con-
structed if and only if
n=2%p,.
whetethepsmdmactoddpnmaoftheform

2 +l.
The only known primes of this form are for ¢ = 0,1 ,2, 3, 4,
when we get 3, 5, 17, 257, 65 537. Regular polygons with these
numbers of sides may be constructed: this is very surprising in the
cases 17, 257, or 65 537!

All these remarks refer to theoretically exact constructions. For
practical purposes all one ever needs is sufficiently good approxi-
mate constructions, which exist for all reasonably small n; that
is, small enough to be able to see the sides of the resulting poly-
gon!

Congrueaces Again

1 promised to prove that arithmetic mod n defines a ring.
Before I can even start, there is a snag: the laws of a ring de-
mand equalities, and all I can as yet offer is congruences. Once I
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have got over this, there remains the problem of proving that the
laws are true.

Let us, as usual, take the special case of arithmetic modulo 7.
In Chapter 3 we found that the set Z of integers split up into seven
subsets, corresponding to the seven days of the week. Wednesday,
for example, corresponded to the set of numbers {...—11, —4,
3, 10, 17. . .}, where the numbers occurring are those of the form
Tn+3.

These are precisely the numbers congruent to 3 (mod 7). If we
let [x] denote the ser of numbers congruent to x, then the sets of
numbers corresponding to the days of the week are [0], [1], [2],
[3), [4), [5}, [6]). The sets [x]) are known as congruence classes.
Furthermore, we have [7] = [0], [8] = [1], [9] = [2], etc., be-
cause a number is congruent to 7 if and only if it is congruent to 0.

In Chapter 3 we had ‘equations’ like 7 = 0,8 = 1,9 = 2; but
we did note that * =’ wasn’t really equality. But for the equation
[7) = [0] it is equality; the sets [7] and [0] are identical. This sug-
gests that by putting square brackets everywhere we can recover
equalities from congruences.

To do this will involve defining sums and products of con-
gruence classes. This may seem daring. On the other hand, earlier
in this chapter we defined them for the subsets of a fixed set 7, so
the idea of adding or multiplying sets is not eatirely unheralded.

We can use the addition and multiplication tables mod 7 to
define them: just put square brackets round everything. Then we
will have

[41+[5] = [2)

[3]+(1] = [4)

[51x[2) = [3]
and soon.

This is a step in the right direction, but it conceals an important
simplification. Notice that [2] is exactly the same set as [9). So
[41+[5) = [9). And [3] = [10}, so that [S)x[2] = [10}. And we
get back to ordinary arithmetic. In general, we have

[a]+[6] = [a+b) @
[a)x [6) = [ab).

You should verify that these give the same tables or addition

and multiplication as we had before. If you do, you will see that
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even the calculations involved in the two cases are basically the
same: one is with brackets, the other without.

Have we come all this way just to end up with ordinary
arithmetic again? Fortunately not. The laws of addition and
multiplication are the same as for ordinary arithmetic, but we
have some extra properties, such as [7] = [0]. We bave ordinary
arithmetic, plus the option of discarding multiples of 7. And this
is exactly what arithmetic mod 7 ought to look like.

Since we now know that the laws of arithmetic mod 7 are
basically the same as those of ordinary arithmetic, it is not sur-
prising that we get a ring. To prove law (8), we proceed this way:

[a}.([6)+[cD = [a).([6+cD (definition of +)
= [a(b+c)) (definition of .)
= [ab+ac) (law 8 for the
ordinary integers)
= [ab] + [ac] (definition of +)

= ([a}.[6D)+([a).[cD  (definition of .)
and all the other laws are equally easy. Everything is referred back
to the ordinary integers.

The same ideas work modulo n for any a. First define con-
gruences classes [x], then define addition and multiplication
using (3). Then prove laws (1)~(8).

It must be mentioned here that (3) is more subtle than it may
appear. It tells us that [1]4-[3] = [4). But it also tells us that
[8]+[10) = [18). And since [1] = [8) and [3] = [10), it comes
dangerously close to telling us two different things for the sum.
But — and here one should breathe a sigh of relief - [4] = [18], so
it gives just one answer after all.

We are not always so lucky. If we split Z into two subsets P
and Q:

P = {integers < 0}
Q = {integers > 0}
and let [x] be whichever of P and Q the integer x belongs to —
which is analogous to putting [x] for whichever of the congruence
classes x belongs to — we run into trouble. Using the formulae (3)
to define P+Q we get:
P+Q = [-5}+[1] = [-5+1) = [—4] =P
P+Q = [-3]+[6) = [-3+6) = [3] = Q.
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This makes (}) a pretty useless definition as far as P and Q are
concerned! In fact, it isn’t a definition at all.

However, for congruence classes (3) is unambiguous, as can be
proved without much effort. If [a] = [a'] and [b] = [b'], then
a—a' = jnand b—b' = kn, where j and k are integers and n is the
modulus. So (a+b)—(a'+b) = (j+k)n, whence [a+b])=
[a’+b'] and everything is all right. The operations + and . are
well-defined by (}) for congruence classes.

An Approach to Complex Numbers

The complex numbers* arise if we wish to solve the equation
x24+1 =0. We introduce a new number i, defined so that
i2 = —1. In order to be able to add and multiply we must have
numbers of the form a+bi for real a and b. Finally we observe
that if the laws of arithmetic are assumed to hold, nothing seems
to go wrong. And as a bonus, we can divide as well.

This is all very fine, but it doesn’t explain very much. It doesn’t
even prove that the laws do hold. And the number / can seem
mysterious: which is why the real numbers are called ‘real’ and
the imaginary numbers ‘imaginary’. This is a great pity - not so
much because it is a slight on the imaginaries, but because it
lends the real numbers an air of respectability that they by no
means deserve!

There is a way of introducing complex numbers which places
them on a par with integers mod n. In the integers mod 7 we
want the equation 7 = 0 to hold, so we take congruences mod 7.
In the complex numbers, we want x2+1 = 0 to hold, so we take
congruences mod x2+1. At least, that is the general idea. First we
must find somewhere to take them.

The somewhere must contain x. We want the reals to come into
the final result, so we must put them in to start with. We want to
do arithmetic, so we want things like x+x, xxx, xxxx+7x—3,
and the like. These look like - indeed are - polynomials in x, with
real coefficients. We already know how to add, subtract, or mul-
tiply polynomials; and we know that the laws of arithmetic hold.
At least, we have always assumed that they hold, which is not
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quite the same thing. But we can prove that they do if we want.
This means that the polynomials form a ring. We denote this ring
by R[x], where the R says the coefficients are real numbers, the x
tells us what the variable is, and the square brackets have nothing
whatever to do with congruences.

In the ring R[x] we can take congruences to the modulus x*+1.
We say that two polynomials are congruent if their difference is
divisible by x2+1. Every polynomial is congruent to its re-
mainder on division by x2+1. For instance,

xX3+x2—2x+43 = (2 +1)x+1)+(—3x+2)
80 that
x34+x2—2x+3 = —3x+42 (mod x2+1).
Indeed, every polynomial is congruent to a unique polynomial of
the form ax+b, where a and b are real. We can eliminate all the
terms of higher degree by subtracting multiples of x2+1.

The constant polynomials look much like the real numbers,
even taking congruences mod x2 +1. The polynomial x satisfies

x? = —1 (mod x2+1)
and so behaves like the imaginary number i. The polynomials
ax+b then behave in the way we want our complex numbers
ai+b to behave.

In addition, we can prove that laws (1)(8) hold for congruence
classes (mod x2+1) in exactly the way we proved them mod n;
except that this time they all refer back to the polynomial ring
Rix].

Finally, we remark that

(ax+bX—ax-+b) = —a3x*+b*
= a>+b*
so that we can find an inverse

—a x4+ b
(=55
for ax+b whenever ax+b # 0. We have a field.

This is a bonus, because we started with R[x], which isn’t a
field. But the same thing happened modulo . We started with Z,
which isn’t a field. When n was a prime number, we discovered
that the integers mod n formed a field. And much the same is
bappening here: the polynomial x2+1 is ‘prime’ in the poly-
nomial ring; it cannot be factorized.
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We could carry on from here and develop all of the standard
properties of complex numbers.

1 wouldn’t recommend this as the best way of introducing com-
plex numbers to a class. But if they have a thorough grounding in
arithmetic mod n, and if they have done some work on complex
numbers, it is an illuminating parallel. We can even say what a
complex number is: a congruence class of polynomials to the
modulus x2+1. A trifle offbeat, but certainly not mysterious.

In a Lighter Vein

The theory of rings and fields can be useful in circumstances far
removed from abstract algebra.

The game of solitaire as you probably know, is played on a
board with holes in the pattern

o O O

o 0 O
0O 0 00 0 0O
0O 0 0 0 0 OO0
O 0 0 0 0 0O

o 0 O

o 0 O

At the start, each hole except the centre contains a peg. The player
may jump any peg over another horizontally or vertically adjacent
peg into an empty hole, removing the peg jumped over. Diagonal
moves are not allowed. The aim is to remove all pegs but one.
Usually it is required that the last peg should end up in the centre.
Anyone playing the game will observe, if he plays it enough, that
although the final peg need not end up in the centre, it does not
seem possible to make it finish anywhere. There is a limited num-
ber of final positions.

We shall ask: in what positions is it possible for the last peg to
be? And we shall answer it by a method due to de Bruijn,® using
a certain field with 4 elements. The elements will be 0, 1, p, and ¢:
and addition and multiplication are defined by the tables



‘We shall not verify here that these tables do define a field, but it’s
true. Try a few calculations if you aren’t convinced.
We observe that the equation
P4+p+1=0 ®
bolds. (This is crucial, and it is why we use the field chosen.) For
P+p+1 =g+p+1

=1+1

=0
We assign integer coordinates to the holes on the board, like

this

-1,3 @©3 @13

(-2 02 (@12
=31 (-31n (-, O ¢ &N G
(-3,00 (=20 (-1,0)0 (0,0 (1,0 (2,0 @3,0
3,-D(-D(-,-D@O, -1, -1 -G -1

(-1, -2)©, -2) (1, -2)

(-1,-3)(0, -3) (1, -3)

A situation is defined to be a set of pegs on the board. For any
situation S we define a value
A(S) =Zp*+!

where the £ sign indicates that we add up all the p*+ for all the
coordinates (k, /) of pegs in the set S. (This, you may note, makes
A a function with domain the set of possible situations and target
the field with 4 elements). Thus for the situation (pegs marked in
black)

O 0 o

o o e
0O 0 0 0 0 OO0
O O e @ O @ O
O € O e O OO

o0 0 o

o o0 o
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S is the set {(~2, —1),(—1,0),(0,0), (0, —1),(2,0),(1,2)} and
we have
A(S) =.p-z-l +p-100+p000+p0-l+p3+0+p1*3
=p~3+p~1+p°+p 1 +p*+p*
=1+¢+1+g+g+1
=1+¢

=p.

The function A is defined to have the very nice property: if a legal
move changes situation S into situation 7, then A(S) = A(T).
The value of a situation is unchanged by legal moves, and there-
fore remains constant throughout the game.

To see this, consider a move to the left. Pegs on (k, /) and
(k—1,10) are replaced by a single peg on (k—2, /). The value
changes

p'”“'-—f'”'—p“"
-p‘“(p’z—P" -1)
=p**'p+p*+1)
= 0, by virtue of (§).
Similarly for moves to the right, up, or down.
There is another function with this property, defined by

B(S) = Zp*-!
(also summed over (k, /) € S). So to each position we can assign a
pair

(A(S), B(S))

of elements of the field. There are 16 such pairs, and they all
occur for suitable positions S. They separate the positions into
16 sets, in such a way that a series of moves does not change
which set the positions belong to.

The initial position of the game has A(S) = B(S) = 1. So any
position that can arise during the game also has A(S) = B(S) = 1.
For a single peg on (k, /) we get

A(S)‘p.*'

B(S) = p*-!
80 that we must have
P =pt-l oy
for any legal final position. The powers of p equal to 1 are p=5,
p3,0%p%...,and in general p**. So k+I and k—! are mul-
tiples of 3, from which it follows that k and / are multiples of 3. So
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the only positions we can reach with only one peg left are (—3, 0),
(0, 3), (3, 0), (0, —3), and (0, 0).
This does not show that these positions are possible. But it does
eliminate plenty that aren’t. And in fact all of them are possible.
The same analysis works no matter what shape the board is, as
long as the holes are arranged in rows and columns. And you can
also consider three-dimensional boards in a similar spirit.



Chapter 7 Symmetry: The
Group Concept

*And now we can solve the problem
without any mathematics at all: just
group theory' - A Cambridge professor

Many kinds of symmetry occur in nature, and have been recog-
nized from early times. The human figure is approximately sym-
metrical about a vertical line (more properly, a vertical plane),
which is one of the reasons why mirrors seem to invert right and
left. This kind of symmetry is known as bilateral symmetry.

The Isle of Man’s symbol of three running legs, or the swastika,
possesses rotational symmetry (Figure 47).

St

A shape may be symmetrical about several lines at once, or
combine bilateral and rotational symmetry. A square is bilater-
ally symmetric about its diagonals and about lines through the
centre parallel to a side: it also can be rotated through 90°.

An entirely different sort of symmetry is exhibited by wallpaper
patterns, where the whole pattern can be displaced in various
directions without looking any different.

The observation that an object is symmetrical can be of great
mathematical power. The discussion of isosceles triangles in
Chapter 2 boils down to the assertion that they are bilaterally sym-
metric. In mathematical physics, laws like the conservation of
energy follow from certain (postulated) symmetries of the uni-
verse. Such a fundamental property as symmetry should be sus~
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ceptible of mathematical analysis, and indeed is. The first step is
to produce a working definition of symmetry, to make sure we are
all talking about the same thing. Otherwise we might confuse
‘symmetrical’ with ‘beautiful’ or ‘complicated’.

The essence of symmetry is the way shapes can be moved
around and still look the same. Individual points, however, need
not stay in the same place. If we rotate a square ABCD about its
centre through a right angle, as in Figure 48, then corner A moves
toB,BtoC,CtoD,and Dto A.

A B D A

X

D c ¢ B

Figure 48

The important thing, then, is not the position of the points, but
the operation of moving them. ‘Turn through a right angle’
describes a symmetry of the square, and so does ‘reflect about a
vertical line’. Now these are what we earlier called rigid motions,
and can be described as certain functions whose range and do-
main are both equal to the plane R,

Thus for any subset S of R? we can define a symmetry of S to be
a rigid motion f : R? - R? such that for all points x € S, the
result f(x) of applying f is also in S. We can express this last
condition as £(S) = S. In geometrical language, a symmetry of S
is a rigid motion of the plane which leaves S in the same place,
although it is allowed to move the individual points of S.

We need not restrict ourselves to the plane, and three-dimen-
sional space is just as good.

For the running legs there is an obvious symmetry: rotate
through 120° about the centre in (say) a clockwise direction. Let
us call the corresponding function (or rigid motion) w. Another
symmetry, say v, rotates through 240°. At first sight these are the
only possible symmetries, but as always we must watch out for
trivial cases too. There is a third symmetry, the identity function.
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This leaves every point fixed, and fits our definition, so we must
include it. To remind us of its nature, we use the symbol /. The set
of symmetries of the running legs is {Z, w, v}.
Rotating through 240° is the same as rotating twice through
120°. In other words, ww = v, where the product is defined as in
Chapter 5. It simplifies notation if we write w? for ww, w* for
www, and 8o on; so that w? = p. In a similar way, v* = w: if you
rotate through 240° twice, the result is the same as if you rotate
through 120°, because 360° is a complete rotation and has the
same effect as leaving everything fixed. In fact, if we take the
‘product’ of any two of the symmetries, we obtain a third one.
We get a table:

X|I wo

I |I wo

wiwo I

o |vo I w

(where the entry in row a and column b is ab).

Using this table, we see that w* = I, This makes sense, because
three rotations of 120° take every point back to where it started.

The fact that the product of any two symmetries is also a sym-
metry is usually expressed as: the set of symmetries is closed under
the operation of multiplication. If we didn’t include 7 as a sym-
metry we would lose this property, which would be like having an
arithmetic where certain numbers could not be added together to
give a number. We could do without it, but it’s much simpler if
we don’t.

This set of symmetries, with its muitiplication, is an example of
a mathematical structure dignified by the title ‘group’. We shall
define a group later on, but for now all we need is the word. We
have found the symmetry group of the running legs.

Every shape has a symmetry group. The human figure has two
symmetries: the identity, and reflection r about a vertical line.
The multiplication table is P

X r

I |1
r

r
r I
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and again the set of symmetries is closed under multiplication.
Let’s do a more complicated example. The equilateral triangle
(Figure 49) has six symmetry operations.

"

/

\

\
N---—-)(
/

There is the identity I, and clockwise rotations w and v through
120° and 240°. There are also reflections x, y, zinthe lines X, Y, Z.
(We think of these lines as staying fixed when the triangle moves.)
The reflections do not arise when we consider the running legs
because they make the feet point the wrong way.

The set K ={I, w,0,x,y,z} of symmetries is closed under
multiplication (as functions), and we get the table below:

xllwoxyz
I |I wo xy z
w|wo I z xy
o |o I wy z x
x|lxy z I wo
y|ly z x o I w
z |z xy wo I
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For instance, we work out wx as follows: wx means ‘do x and
then do w’, The triangle
A
CB
moves under x to
A
BC
and then, under w, moves to
B
CA
which gives the same effect as z. Sowx = z.
Here’s another one: yz. Under z the triangle moves to
B

CA
and under y this goes to
(o]
B A
(remember, the lines X, Y, Z stay fixed). But this is what w does.
Soyz =w.

‘You should now be able to check that the table is correct. For
vividness, make a cardboard triangle and mark its corners; draw
round it on a sheet of paper and mark X, Y, Z on the paper.

In general, to find the symmetry group of a figure we must

(i) find all the symmetries,
(i) work out the multiplications.

In every case you will find that the set is closed under multipli-
cation. This is no accident. If f and g are rigid motions, so is fg.
If fand g both leave the set S fixed, so does fg, because f7(S) =
g(8)) =£(S) = S. If doing f or g doesn’t change the shape,
neither does doing them both.

The same ideas apply to solid figures. The cube has 24 rotational
symmetries, 48 including reflections. We can move any vertex to
any other and rotate the edges leading to that vertex in three ways.
The dodecahedron has 60 rotational symmetries, 120 including
reflections. Naturally we do not bother to work out a multipli-
cation table! There are other ways of expressing the relations
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between symmetries other than listing all possible products,
although we shall not delve into them here.!

‘The Group Concept

The concept of a ‘group’ is abstracted from these, and other,
examples; in the same sort of way that the concept ‘ring’ was
abstracted from arithmetic. Rather than beat around the bush I'll
give the definition first, and discuss it after we've seea it.

A group consists of :

(1) AsetG.
(2) An operation *** which assigns to any elements x and y
of G an element x*y which also belongs to G.
This operation is required to satisfy three laws:
(3) The operation is associative: for any x, y, z € G wehave
x*(y*x) = (x*y)*z.
(4) There is an identity element / € G such that
I*x =x=x*1
forany x € G.
(5) There are inverses: for any x € G there exists X’ € G
such that
x*x =1=x"*x

Groups can arise in many quite distinct situations. Here are some
examples:

(i) G is the set of symmetries of the running legs, and * is
multiplication of symmetries, as in the table on p. 97. We
have to check properties 1-5. Now (1) is obviously true: we
have just defined G to be a set. (2) works because of closure.
(3) is true because it is true for functions. (4) is true, and we
have jumped the gun by using 7 to denote the identity func-
tion. Finally, (5) is true: wecan take I’ = I, o' = w,w’ =0,

(ii) Let G be the set of integers: G = Z. Thea (1) holds.
Let * bethe operation + of addition. Then (2) holds because
if a and b are integers then a+b is an integer. Condition (3)
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is law (1) of arithmetic (p. 76), (4) is law (3) (with O playing
the part of I), (5) is law (4).

(iii) Let G = R, the reals, and * = +. Argue as in (ii).

(iv) Let G be the set of non-zero rationals, and let * be
the operation of multiplication. G is a set, and the product
of two non-zero rationals is a non-zero rational. This deals
with (1) and (2). Condition (3) is law (5) of p. 77, which
holds for the rationals, and (4) is law (7) (with 1 playing
the part of I). The rationals form a field, so condition (5) is
law (9), which holds in any field.

(v) Let S be any subset of the plane, G its set of symmet-
ries, * multiplication of functions. Then, as in example (i), we
have a group.

It should be emphasized that the failure of any of the five con-
ditions means that we do not have a group.

If we took G to be the set of integers between —10 and 10, and
* to be addition, then (2) is violated: 66 is not an element of G.

The set of integers greater than 1, under the operation of
addition, has no element satisfying (4).

The set of integers, under the operation of subtraction, vio-
lates condition (3) because subtraction is not associgtive:

(2-3)—5=—6#4=2—(3-5).

The set of all rationals, under multiplication, is nor a group.
The only element we can find for / is 1, and then we cannot find
an element 0’ such that 0'0 = 1; because for any rational r we
haverx0 = 0,500'0 = 0,not 1.

So none of these define groups.

Let me say a few words about the operation *. Given any pair of
elements (x, y) where x, y € G we obtain a unique clement x*y
of G. This means that * defines a function whose domain is the
set G x G of pairs (x, y), and whose target (in fact range) is G. An
operation may be defined as a function

*:GxG—~>G
as long as we agree that x*y is shorthand for *(x, y). Once we do
things this way, condition (i) is automatic, and may be omitted ~
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except that we have to check, in any particular case, that * really
is a function from G X G into G.

Instead of x*y we can write xy (we must remember that this need
not be ordinary multiplication) and it then becomes natural to
write x' = x~1. If you use this notation, but work in the group of
integers under addition, then xy means x+y and x~! means —x.
It is important not to get confused!

Subgroups

If, from the six symmetries of the triangle, we select the three J,
w, and », we find that these form a smaller group inside the big one.
‘You can check this from the multiplication table, or geometric-
ally: these are the symmetries which don’t turn the triangle over,
and if two such symmetries are multiplied together the resulting
symmetry also does not turn the triangle over.

This smaller group within the larger is an example of a sub-
group. If G is a group with operation *, then a subset Hof Gisa
subgroup if H forms a group under the operation *.

Not every subset H is a subgroup. If we tried H = {x, y, z} we
would not get a group, because xy = w which isn’t in H. If 5 and
k lie in H then we must have

() h*keH
({ii)h~‘eH

from which it follows, for non-empty H, that
(iii) I = h*h~' € H.

Conversely, conditions (i) and (ii) are sufficient to ensure that a
non-empty subset H is a subgroup, because the associative law is
bound to hold in H if it does in G.

Subgroups are extraordinarily common.The group of integers,
under addition, has subgroups comprising all even integers, all
multiples of 3, all multiples of 4, all multiples of S, . . ., . Every



Symmetry: The Group Concept 103

group G is a subgroup of itself, as is the single element set {I},
which has the trivial multiplication table

x |1

1 ’7
The symmetry group of the equilateral triangle has in all six
different subgroups:

{I,w,o,x,,2}
{I, w, 0}

{1, x}

i, »n

{2}

{D.

The number of elements in a group (if finite) is called the order
of the group. We have just found a group of order 6, having sub-
groups of orders 1, 2, 3, and 6. It does not take a genius to see that
these numbers all divide 6. After looking at a few more examples,
one is tempted to guess that the order of a subgroup always
divides the order of the group.

This guess would be correct: the theorem was proved by
Lagrange some time before the abstract concept of a group was
detined!

Let’s put K ={I,w,v,x,y,2} and consider the subgroup
J = {I, x}. For any element a € K we form the coset J*a, defined
to be

{I*a, x*a}.
We form this by multiplying each element of J by a, and collecting
the resulting elements into a single set. We can compute what these
are:

JoI = {I, x} Jox ={I,x}
J*% = {v, 2z} J*z ={v,z}
J*w = {w, 3} Ity ={w,»}
‘We notice several things:
(i) There are only 3 distinct cosets.
(ii) One of them is J itself.

(iii) No distinct cosets have any element in common.
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(iv) Every element of K lies in some coset.

(v) Each coset has the same number of elements.
From (ii) and (v) each coset has 2 elements. From (iii) and (i) all
the cosets, taken together, have 2.3 = 6 elements. From (iv), K has
6 elements. This not only explains why the order of J divides that
of K; it says that the result of doing the division will be the num-
ber of cosets.

The proof of Lagrange’s theorem follows the same lines. One
shows that (i)~(v) are true for any group K and any subgroup J
(except that in (i) we get an unknown number ¢ of cosets). If J has
order j and K has order k, it follows that k¥ = je. So j divides k.
Properties (ii)~(v) follow from the group axioms, after a little
preparatory work.

This is a remarkable theorem. From the vague-sounding
(though actually hyperprecise) abstract ideas of group and sub-
group we extract a concrete numerical relation. If I gave you a
group of order 615 you would know, without any information
about the multiplication table, that its subgroups cannot have any
orders other than 1, 3, 5, 15, 41, 123, 205, and 615.

One might ask whether all these must occur. The group of
rotations of the dodecahedron has order 60, but has no subgroup
of order 15, even though 15 divides 60. The best that can be said
in general is Sylow’s theorem: if h is a power of a prime and divides
the order of a group G, then G has a subgroup of order A. So our
group of order 60 certainly has subgroups of orders 2, 3, 4, and
S. Any group of order 615 has subgroups of orders 3, 5, and 41.

Isomorphism

There are other ways of producing groups with 6 elements. If we
take the set S = {a, b, c} there are 6 bijections S — S, namely the
functions p, g, r, s, #, u given by
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where, for example, the value s(b) of the functions s at b is the
entry in row b, column s: namely, c.

Bijections between a set and itself are known as permutations of
the set.

Under multiplication of functions these 6 bijections form a
group, with multiplication table

X

b}
~
Y
-
=

q

R~ wak
R~ YA
~E YuwaQ
hiﬁ“‘\‘
R T
Q EY R Y~

NQ ™R

P

For instance, to find rs we have

rs(@) =r(s@) =r(®) =a

rs(b) =r(s®) =r(c) =c¢

rs(c) =r(sc)) =r(@)=b
which makes rs have the same effect asg. Sors = g.

This is not the same as the symmetry group of the equilateral
triangle, because its elements are different. But there is a strong
resemblance between the two groups, in addition to them both
having order 6.

Every symmetry of the triangle rearranges the vertices A4, B, C,
in the following way:

~
¥
<
L3

E@ A0k
toedB ® a0
§. wAaA
Cceor B Awa|vw
é aak |~
g

N &

&
o

S o~
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If we rewrite the two multiplication tables so that elements paired
off here occur in corresponding positions along the top and down
the sides, and then fill in the products from the original tables, we
get:

X|I wo xy z X|p st qur
111 wo xy z Pplp st qur
w|wo I z xy s |s ¢t pr qu
o |o I wy z x t |t ps urg
x|lxy z I wo q |q urpst
y|ly z x o I w u (ur gt ps
z|lz xy wol r|r q ust p

Not only do the elements occur in corresponding positions
along the top and down the sides: they also occur in correspond-
ing positions in the main body of the tables. Thus /and p occur in
the positions

and x, g occupy

One should not be too surprised at this, because the way in which
the permutations multiply is very closely connected with the way
the symmetries multiply. It shows that two groups can have the
same structure without being identical. The difference between
them lies in the names of the elements.

To make this idea sufficiently precise to be useful, we consider
the function f such that f(I) = p, f(x) = g, . . ., which gives the
correspondence between elements of the two groups. The domain
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of fis the first group, its range is the second. Take two elements a
and B of the first group. In row a and column § we get the element
a*p. In the corresponding row f(a) and column f(5) of the second
table, we should getf(a)*f(). But this, we observed, is the element
corresponding to a*, which is f(a*B). So the observation that
‘corresponding elements occur in corresponding places’ means

that
Sf(a*h) = f(a)*f(B) ®
for all a and Bin the first group.

The advantage of using (f) is that it does not depend on geo-
metrical properties of multiplication tables. Given any two groups
G and H we say that they are isomorphic if there is a bijection
Jf:G — H such that () holds for all a, § € G. Isomorphic groups
have the same abstract structure, and differ only in their elements.
Since it is the way the elements multiply that contain the essential
structure of the group, for most purposes isomorphic groups may
be thought of as being the same.

The first of our two groups above, we found, has 6 subgroups.
This immediately implies that the second, which is isomorphic,
has 6 subgroups too: for instance, the subgroup {/, w, v} of the
first gives rise to a subgroup{p, s, ¢} of the second.

Groups of equal order need not be isomorphic. There is another
group of order 6, which we can get by taking the integers mod 6
under the operation of addition. Its *multiplication’ table is the
addition table mod 6, namely

Call this group M. Is M isomorphic to the symmetry group K of
the equilateral triangle?
One way to decide would be to try all possible bijections from
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M to K and see if equation () holds. If we tried defining / by
SfO) = Lf(Q1) = w,f2) = 0,/(3) = x,f(4) = y,f(5) = z, then we
would have

fA4+) =f@)=x

R =w=1I
which means we have the wrong function. There are only 720
bijections to try. It could be done that way.

Instead, we could try to find properties of M which do not
depend on the names of the elements. One such property, we saw,
was how many subgroups it has. If you work them out, you will
find that the subgroups of M are {0}, {0, 2, 4}, {0, 3}, and M. So M
has only 4 subgroups, and cannot therefore be isomorphic to X,
which has 6.

This is better than trying 720 functions: But there is an easier
way. Addition mod 6 satisfies the commutative law (law (2) of
p. 76), a+p = p-+a. Suppose we had an isomorphism f/: M - K.
Then

S@a+p) =f(f+a)

Sf@)f(B) = f(B)f(a).
In other words, K also would satisfy the commutative law, this
time for multiplication. But ox = y, xv = z, 30 it doesn’t. So no
isomorphism can exist between group M and the symmetry
group K.

Isomorphisms are a great simplifying device. It is important in
mathematics to be able to recognize when two apparently distinct
problems are basically the same. If isomorphic structures occur in
the two problems, this may give a hint of connections between
them.

In our example above we found the isomorphism by exploiting
a known connection between the symmetries of the triangle and
the permutations of 3 elements. Sometimes it happens the other
way round: you observe an isomorphism and ask why it happens.
There is a certain group of permutations on a set with S elements,
associated with the general equation of degree 5. (The elements
permuted are the 5 roots of the equation.) This group has 60
elements. The group of rotations of the dodecahedron also has 60
clements. It can be shown that the two groups are isomorphic.

so that from ()
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Among other things, this explained a previously observed fact:
the quintic equation can be solved using a certain special kind of
complex function — known as elliptic functions. Before Klein’s
synthesis, this could be proved only by formless calculations. It,
too, seemed like a coincidence. Klein found out why it happened.

Classifying Patterns

Group theory will crop up whenever symmetries exist. It allows us
to describe symmetries according to the underlying group. By
dodecabedral symmetry, for example, we mean ‘having a sym-
metry group isomorphic to that of the dodecahedron’.

Not only this. It allows us to classify symmetries. In certain
situations we can say: these symmetries, and only these, are
possible.

Wallpaper patterns, abstractly, are symmetric configurations
in the plane. The symmetry group of a wallpaper pattern consists
of certain rigid motions, and is a subgroup of the group G of all
rigid motions of the plane. To go further, we must say more care-
fully what we mean by wallpaper patterns: they must extend
arbitrarily far, and they must be discrete in the sense that they
‘come in lumps’ instead of merging continuously into each other.
(There is a precise but technical mathematical description.) One
can then classify the suitable groups of rigid motions, with the
conclusion that there are precisely 17 wallpaper patterns (9 of
which are ‘friezes’ rather than genuine wallpapers). These are
illustrated in Figures 50-52.

When you look at a book of wallpaper samples - hundreds and
hundreds of different patterns — you would not imagine that any
useful classifications could be made. There are so many of them.
But if you forget about the colours, the size, the quality of the
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emerges: there are only 17 basically different kinds.
that all 17 occur in the works of Arabian potters. It would be an

peper (all of which are relevant to the practical side of wall-
pepering!) and concentrate on the basic structure, this fact
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The analogous problem in three dimensions - the classification
of the 230 possible symmetry groups® - is important in crystal-
lography: from this one can make deductions about the molecular
structure of crystals.



Chapter 8 Axiomatics

‘Only an elephant or a whale gives birth
10 a creature whose weight is 70
kilograms or more. The President’s
weight is 75 kilograms. Therefore the
President’s mother was either an
elephant or a whale’ - Stefan Themerson

Mathematics operates on many levels. A child learns how to work
out problems involving a particular number or numbers. Later,
he deals with properties common to all numbers: in a sense the
object with which he works has changed from a number to the
ring Z of all numbers. Then, in ring theory, instead of studying
one particular ring, be studies whole classes of rings. A whole area
of mathematics becomes a single object, and that object is but one
of many in another area. And so it goes on.

Our line of thought in this chapter will take us one stage fur-
ther: the objects of our thought will be complete theories - ring
theory, field theory, group theory, geometry.

There are many similarities in the ways we have defined the
concepts ‘group’, ‘ring’, ‘field’. We introduce certain basic terms,
These terms are never defined. Instead we list a number of laws
that they are required to satisfy. These laws are the axioms; the
whole set-up is an axiomatic system.

You are not asked to ‘believe’ the axioms. Indeed, it is futile to
question them, as well as irrelevant; because they do not cor-
respond to reality. Whenever you are confronted by an axiomatic
system, somebody else is telling you what properties he means the
system to have. Axioms are like the rules of a game. If you
changed them, you would no longer be playing the same game.

Starting from a system of axioms, one then makes certain
logical deductions. All of these take (implicitly or explicitly) the
form: if the axioms hold, rken something else does. The ‘truth’ of
the axioms is not in dispute. The fact that the Roman empire did
collapse is not relevant to a discussion of what mighs have hap-
pened had it not collapsed. What one can dispute is the validity of
the deductions.
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One can also dispute the applicability of the axioms in any par-
ticular case. Whether or not the real world works the way the
axioms say is a pertinent question when one tries to apply the theory
0 the real world, but it is not a question that is part of the
theory. It needs to be answered by experiment. In the same way,
in order to apply group theory to a branch of mathematics, one
must check that the relevant objects are groups. If they are not,
we cannot apply the theory. But that makes no impression on the
theory. ‘Are the group axioms true?’ is a nonsense question.
Axioms are not true in any absolute sense; but they may be true
of something.

The power of the axiomatic method is that it derives a large
body of theory from a small number of assumptions. If anything
satisfies the assumptions, it is bound to satisfy all the conclusions
derived from them. We can apply the whole power of the theory
at the expense of checking just a few properties: we don’t have to
go through all the work over and over again for each application.

The concept of an axiom system as something divorced from
reality is relatively recent. It would seem that the ancient Greeks,
when they laid down axioms for geometry, thought that they were
talking of genuine physical truths, albeit of an idealized nature,
Certainly the common definition of ‘axiom’ was ‘self-evident
truth’ - and my dictionary still maintains that this is the case. But
the word as used in mathematics has taken on a different meaning.
Turn to the group axioms. Are they self-evident?

Euclid’s Axioms

Euclid listed a number of axioms for geometry, of which the most
important are:

(1) Any two points lie on a straight line.

(2) Two lines meet in at most one point.

(3) Any finite line scgment may be produced as far as you
wish,

(4) It is possible to describe a circle with any centre and
any radius.

(5) All right angles are equal.
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(6) Given any line, and any point not on the line, then
there exists exactly one line parallel to the first line and pass-
ing through the given point.

(These are not given in exactly the form Euclid gave.)

1t was for a long time regarded as a blemish that axiom (6) ap-
peared to be far from self-evident. Many attempts were made to
prove it from the other axioms: all fallacious.

‘We shall see iater that axiom (6) cannot be proved in this way.
A more meaningful question is: is it true of the real world? This
is not a mathematical question. To answer it we should perform
an experiment. However, imagine the ancient Greeks performing
such an experiment. They draw two ‘parallel’ lines - say lines of
longitude - through Rome and Athens: these meet at the South
Pole. The parallel-axiom is false for the geometry of the surface of
the earth,

This is cheating, really: we know that the earth is round, and
Euclidean geometry applies to planes, not spheres. Actually, if
you think about it, we know the earth to be round precisely be-
cause it does not behave as Euclidean geometry says; so if Buclid
was wrong then perhaps the earth need not be round after all.

A fairer experiment would be to use laser beams, or some such,
as straight lines. You point your lasers out into intergalactic
space, as nearly parallel as you can get them, and then try to find
out if they meet or not. This, unfortunately, is not an experiment
that could be carried out in practice. (And if some cosmologists
are correct, it would not verify Buclidean geometry even if we
could carry it out.)

It looks as if Euclid had a far better idea of what he was up to
than many who later criticized him. He must have suspected that
the paraliel-axiom could not be proved, and that is why he stated
it explicitly.

Consistency

When you first start working out an axiomatic theory, all you
have to go on is the axioms (as far as logical deduction is con-
cerned: psychologically you will have some intuitive ideas as to
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how the theory should develop). You use these to prove some
theorems; then use these theorems to prove others. The axioms
become the source of an outward-spreading wave of theorems, all
ultimately dependent upon them.

All is well as long as you cannot prove two contradictory
theorems in this way. But if you can prove two contradictory
theorems, then the whole theory becomes useless. For it is then
possible to prove anything.

The analyst G. H. Hardy once made this remark at dinner, and
was asked by a sceptic to justify it: ‘Given that 242 = §, prove
that McTaggart is the Pope.” Hardy thought briefly, and replied,
‘We also know that 2+2 =4, so that § =4, Subtracting 3 we get
2 = 1. McTaggart and the Pope are two, hence McTaggart and the
Pope are one.’

To proceed more generally we must first recall the method of
proof by contradiction (or reductio ad absurdum). We wish to prove
a statement p. We begin by assuming that p is false: on the basis
of this we deduce two contradictory statements. This is absurd, so
our assumption of the falsity of p must be wrong. Therefore p is
true. The validity of this method is built in to current mathe-
matical logic. We used it in Chapter 6 to prove /2 irrational.
But now suppose we have an axiomatic system from which we
can deduce two contradictory theorems r and s. Perhaps r is
“butter is cheap’ and s is ‘butter is not cheap’. Then we can use
these to provide the contradiction in the above proof, whatever p
may be. The theorems r and s can be deduced from p, because
they can be deduced from the axioms. We don’t actually have to
use p in the deduction.

For instance, to prove ‘the country is going to the dogs® we
assume the opposite: it is no¢ going to the dogs. Now we deduce
both ‘butter is cheap’ and ‘butter is not cheap’, which contradict
each other. Our assumption must be wrong, so the country is
going to the dogs.

The same argument will also prove that it is nor going to the
dogs: start by assuming it is and proceed as before.,

This is total disaster. One could, perhaps, put up with an oracle
which occasionally answered both ‘yes’ and ‘no’ to the same
question. But what use is an oracle which ahvays answers ‘yes’?
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A system of axioms which does not contradict itself is said to be
consistent. Consistency is a prime requisite for any axiomatic
theory. Its importance was first emphasized by David Hilbert, the
founder of the modern theory of axiomatics.

It is not always obvious that an inconsistent theory is in-
consistent. The problem can be a very delicate one. The axioms
for a field are consistent. But if we modify law 9 to read ‘every
element [rather than every non-zero element] has a multiplicative
inverse’, then the system becomes inconsistent. Because if 0 bad
an inverse 0~* we would have

00).0-* =00-1 =1
0.(000-)=01=0
which contradicts the associative law, because axiom (10) of p. 80
says that 0 # 1. (This is why ‘thou shalt not divide by zero’. It
messes up the laws of arithmetic.)

So here we have a very small modification which changes a
consistent system into an inconsistent one. And unless you know
where to look, the second system is not obviously inconsistent.
However innocuous a given set of axioms may appear, the ques-
tion of its consistency will still arise.

Models

Hilbert also gave two other requirements for an axiomatic
system; completeness and independence.

To say what ‘completencss’ is we need the idea of a proofin an
axiomatic system. If p is some statement in the system, a proof of p
consists of a sequence of statements, each of which is either an
axiom or a logical consequence of certain preceding statements in
the list, such that the last statemeat in the list is p. The proof of the
statement

x4y = x*+2xy+y?
in Chapter 6 is an example. A system is complete if, for every
statement p, we can find a proof of p, or a proof of not-p. In other
words, we have got enough axioms to prove the truth or falsity of
any conceivable statement of the system.

In a complete system there is no significant way in which we
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can add extra axioms: either they will follow from those we
already have, and so be redundant; or they will contradict those
we already bave, and 30 be pointless.

A set of axioms iS independent if no axiom can be deduced from
the others.

It is always difficult to prove an axiom system complete, if
indeed it is, because one needs to consider all possible proofs. But
there are simple methods for proving independence (in suitable
circumstances), and occasionally consistency. These revolve
around the idea of a model.

A model of an axiom system is some object in which, with a
suitable interpretation, the axioms are true. Any group is a model
for the group axioms: the abstract operation * of the axioms is
interpreted as some definite operation in the special group under
consideration. It might be addition, or multiplication of functions.
Similarly any ring is a model for the ring axioms, and any field a
model for the field axioms. Coordinate geometry provides an
algebraic model for the axioms of Euclidean geometry, if we
interpret ‘point’ to mean ‘pair (x, y) of real numbers’ and ‘line’,
“circle’, etc. in the usual way.

If you can exhibit a model for a system of axioms, then they
must be consistent. Any one of the group multiplication tables
defines a model: we could take the most trivial possible example

x | I

1 lI .
If the axioms were inconsistent, then amy theorem could be
proved. You could prove that every group has 129 elements. But
since the axioms hold in the model, so do all consequences of
them. So the mode] must have 129 elements. But we can see that it
doesn’t. Therefore there are no inconsistencies.

Or, to argue slightly differently, any contradiction in theorems
deduced from the axioms will show up in the model. We will be
able to prove that the model has a certain property, and also that
it does not. This can’t happen, because the model cither has the
property or not: it can’t have both.

Models are particularly useful for proofs of independence. Sup-
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pose we wanted to prove that the associative law for group multi-
plication is independent of the other axioms for groups. All we
need do is find a model in which the associative law does not hold,
but the other axioms do. Any deduction of the associative law
from the other axioms would lead to a proof that the multipli-
cation in the model was associative: but we have chosen our
model so that it isn’t.

We'll define a model using a multiplication table. We want to
satisfy axioms (1), (2), (4) and (5) of p. 100, but not (3).

Axiom (1) says we need a set G. To make life easy, we take a
small set; but to give room to manoeuvre we won’t make it foo
small. Try G = {q, b, c}.

Axiom (4) asks for an identity element. If we make a the
identity, then part of the table is determined::

X|la b ¢

b ¢

IS )

a
b
c

Next, look at axiom (5), which asks for inverses. Our identity
element g already has an inverse, because a? = a. If we arranged
to have bc = cb = a this would provide inverses for b and c. So
now our table looks like

and axioms (1), (4), and (5) hold.

Now axiom (2) says that we must define the product of any two
elements, and that product must be in G. To satisfy this, all we
need do is fill in the rest of the table with as, bs, and cs. It doesn’t
matter how we do it. But since we want (jii) to be false, we must
avoid choices which make (iii) hold. It would not do to fill the two
remaining spaces with ¢ and b, because the table would look
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like that for the symmetries of the running legs, which do satisfy
the associative law. So we try

X|a b ¢

After a few trials we discover that for this table
(cc)b=bb=0b
co(ch) =ca=c

80 the associative law fails.

This completes the construction of the model.

The construction of models is an art, rather than a science. It
requires experience, taste, and a dash of de Bono’s ‘lateral
thinking’. The best way to learn how to do it is to try.

We shall return to thequestionsof completeness and consistency
in Chapter 20. Our immediate object is to apply the method of
models to the problem of Euclid’s parallel-axiom.

Eaclid Vindicated

We can phrase the problem thus: is Euclid’s parallel-axiom in-
dependent of his other axioms? Having stated it in these terms, we
are half way to a solution: the biggest difficulty is realizing that
independence might be the case. The two alternatives: it is
provable from the other axioms, it is disprovable from the other
axioms, do not exhaust the possibilities.

For our answer we must make one assumption: that the axioms
for Euclidean geometry are consistent. This is because we are
going to use Euclidean geometry as the raw materials for the
model. And if it was inconsistent, the question of independence
would not be our main cause of worry.

Construction of models, I said, was an art. On this occasion the
art is conjuring: I can do no better than wave the magic wand and
extract the rabbit from the hat.

Draw a circle I' in the plane. Our model will be that part of
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Euclidean geometry which happens inside I'. To keep the record
straight we’ll use italic type for the interpretations, in the model,
of standard Euclidean concepts. Let us define

point = point of the plane inside I’
line = that part of a line in the plane which lies inside I’
circle = that part of a circle in the plane which lies in-
side I'
right-angle = ordinary right-angle, inside I".
(These are illustrated in Figure 53.)

Figure 53

Now we check the axioms (as on p. 114).

(1) Any two points lie on a straight line. This is true. It we
take two points in T they are also points in the plane. We join
them by a line in the plane, and then chop off the bits outside
T to get a line (Figure 54).

(2) Any two lines meet in at most one point. This is true.
‘The two lines are parts of two lines, which meet in at most
one point, 80 certainly in at most one point (Figure 55).

(3) Any finite /ine segment may be produced as far as you
wish. This is more controversial. At first sight it seems to go
wrong, because as soon as a line goes outside I it ceases to be
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a line. But even Buclid did not mean you to produce lines
outside the plane - off the edge, so to speak. The construction
must be confined to the region under discussion. So we need
to consider the concept produce rather than produce. The
force of axiom (3) is that if you have a line segment with ends,
you can extend it beyond the ends. This is also true in T, pro-
vided that when we say ‘inside I'* we do not include anything
on T'. Because, as in Figure 56, we can keep extending the line
topoints 1, 2, 3, 4, 5, . . ., without ever stopping.*

The line itself has no ends: what ought to be itsends lieon T,
not inside it, so are not points. As far as the model is con-
cerned all lines go on for ever.



Figure 56

(4) It is possible to describe a circle with any centre and any
radius. This follows from the same axiom in the plane, as
always chopping off anything outside (or on) I'. Of course
circles are not always “circular’ (Figure 57).

r

s

Fgure 57

But this does not affect the validity of the axiom.
(5) All right angles are equal, again because in the plane all
right angles are equal.
Thus the model satisfies axioms (1)-(5). However, axiom (6) is
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not satisfied: Figure 58 shows a line, a point, and several
lines parallel to the first line through that point.

r

N

Here, of course, we interpret ‘paralle]l’ as ‘not meeting’. It does
not matter that the lines, if produced outside T, meet; for points
outside I are not a part of the model.

It now follows that axiom (6) is not provable from axioms (1)~
(5). For if it were, then since (1)~(5) are true for the model, then
(6), as a logical consequence, must also be true for the model. But
it isn’t. From a slightly different point of view: any proof of
axiom (6) in Buclidean geometry becomes a proof of axiom (6) in
the model if we replace all occurrences of ‘point® by ‘point’, of
‘line’ by ‘line’, and so on. Since (6) is false in the model the sup-
posed Euclidean proof cannot exist. The fact that ‘points® are not
the same as ‘points’ does not affect the argument: the difference
between them is taken care of by the validity of axioms (1)~(5).

This is what I meant by the section heading ‘ Buclid Vindicated’.
Not that Euclidean geometry is the only one possible. But that
Euclid was quite right to put down the parallel-axiom as an as-
Ssumption, not provable from his other axioms.

Other Geometries

By making different choices of model you can polish the proof up
a bit; in particular making (3) and (4) more convincing. The trick
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is to redefine length inside I' to make all lines infinitely long
(though then they have to be bent). For more details, consult
Sawyer.?

Instead of having more than one parallel, we can arrange to
have none at all. The model this time is due to Klein: we use
small capitals for interpretations in the model.

Construct a sphere Z in three-dimensional space. The surface
of T will play the part of the Euclidean plane. Define

LINE = great circle on Z (that is, one whose centre co-
incides with the centre of the sphere);
POINT = pair of diametrically opposite points on Z.

Now we check the axioms. Axiom (2) is true because any two
great circles meet in a pair of diametrically opposite points, and
the other axioms (1), (3), (4), (5) hold (with no quibbles about (3)).
But because any two great circles meet, there are no parallel
LINEs at all! (See Figure 59).

a
Figure 59

So now we have three different kinds of geometry: Euclidean
geometry; hyperbolic geometry where there may be many different
parallel lines; and elliptic geometry, where there are none.

Riemann introduced a more general kind of geometry, which
can be elliptic in some parts and hyperbolic in others. The two-
dimensional version of this can be thought of as the geometry of a
curved surface (Figure 60).
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Near A the geometry is elliptic, near B it is hyperbolic. (This ex-
plains the terminology: a section of the surface near A is roughly
an ellipse, near Ba hyperbola.)

Riemann’s idea goes further than this. There are spaces of
three dimensions (or more) whose geometry also varies from
place to place. ‘Curved’ space! According to Einstein, ordinary
space—time forms such a geometry. We can cither say that the
‘curvature’ is caused by gravitational attraction of matter, or that
matter and gravity are caused by the curvature.

If the geometry of space~time is elliptic in some regions, it may
be possible to set out in a straight line and eventually get back
where you started. Worse, the same could happen to time: you
might get back before you set out. This may sound unlikely. But
some astronomers claim that already there is a higher-than-
chance proportion of radio stars at diametrically opposite points
in the sky. It could be that these pairs of stars are really just one
star seen from two opposite directions.



Chapter 9 Counting: Finite and
Infinite

‘Fourteen,’ said Pooh. ‘Come in.
Fourteen. Or was it fifteen? Bother.
That's muddled me - A. A. Milne

You cannot teach a child to count by telling him what numbers
are. Instead, you show him instances of their occurrence: two
dogs, two apples, two books, . . . , and he gradually observes that
the property of ‘two-ness’ is common to all these examples. He
forms - for himself - the concept * number’.

Numbers are properties of sets. It is the set of apples, or dogs,
that has two elements; not any individual apple or dog. We do not
count an object: we count sets of objects. When mathematicians
began to wonder what numbers really were, they observed this
fact. They also realized that it is easier to say when two numbers
are the same than to say what they are.

If a child has two cups, each sitting in its own saucer, there
comes a stage when he realizes that he must also have two saucers.
Playing musical chairs, if there are seven players and six seats,
somebody won’t have a seat. If a theatre manager sees that each
seat in his theatre is occupied by exactly one person, then he
knows that the number of people is exactly the same as the num-
ber of seats. He doesn’t have to know how many seats there are to
know this,

This means that the concept ‘same number’ does not depend
on the concept ‘number’ (despite the vagaries of the English
language). In the same way, you can find out if two pieces of string
have the same length without ever knowing what that length is,
by laying them side by side. Or you can tell if two objects have the
same weight, using a beam-balance. In all three cases it is easier
to say when two given objects have the property in common than
to say in general what that property is. All you need is a way of
comparing objects with respect to the (as yet undefined) property.

For length or weight it is not hard to decide the method of
comparison. What of ‘number’?

Let’s go back to the example of people in theatre seats. In order
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to be certain that the numbers are exactly the same, we need to
know:

(i) Each person sits in exactly one seat.

(ii) Each seat contains exactly one person.

If we let S be the set of seats and P the set of people, then for each
person p € P we can define f(p) € S to be the seat in which he is
sitting. And then f: P — S is a bijection (one-to-one correspond-
ence). Firstly, ffits our definition of a function: its domain is P,
its target S. The rule assigning f(P) to p is unambiguous, by (i)
above. And fis a surjection, because by (ii) each seat contains a
person, and an injection, since by (ii) again it contains only one
person.

Quite generaHy, two sets will have the same number of elements

if and only if there is a bijection between them. The situation is
illustrated by Figure 61.
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Figure 61

To avoid linguistic problems, let us say that two sets are
equinumerous if there exists a bijection between them. This carries
the same implications as ‘same number® but makes it clearer that
we don’t yet need to know what a number is. In the same way that
we can chop up the set Z of integers into congruence classes, we
can chop up the set of all sets into classes, in such a way that two
sets are equinumerous precisely when they lie in the same class.
Each class may be specified by giving one of its members. The
class containing {a, b, ¢, d, €} will also contain every set equinum-
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erous with {a, b, ¢, d, €}, and these are exactly the sets with 5
elements. The situation is illustrated in Figure 62.

Figure 62

In this sense the number § is specified by

(i) giving some set and saying that it has 5 elements;
(i) saying that any set equinumerous with the given one
also has 5 elements.

In fact, as Frege observed, we have a very curious situation.
There is a mysterious and wonderful concept, ‘number’, which
we cannot define. There is a down-to-earth concept, the class to
which a given set belongs. Two sets have the same number if and
only if they belong to the sAme class. From this it follows that if
we know everything about the classes we know everything about
the numbers.

At this point one can adopt two attitudes.

(A) Whatever these silly classes are, I know perfectly well
that they aren’t numbers. They just behave like them.
(B) I don’t know what numbers are: I just use the word.
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These classes behave just like my hypothetical numbers, with
the advantage that I know what they are. I might as well say
that numbers are these classes.

It doesn’t matter much which attitude we adopt, as long as we
realize that (B) has a good point: we could use the classes to de-
fine numbers if we wanted to, and it would give a perfectly satis-
factory definition.! Indeed, when we point out to a child two
dogs, two apples, two books, are we not just pointing out the
elements of the class associated with 2°?

All we really need to know about numbers is this: to every set
is associated something called its number. This has the property
that two sets have the same number if and only if they are
equinumerous.

We could take the existence of numbers, with the above pro-
perty, as an axiom. Once we know this, we can recover all of
arithmetic. First we define a few numbers:

0is the number of the empty set @

1 is the number of the set {x}

2 is the number of the set {x, y}

3 is the number of the set {x, y, z}

4 is the number of the set {x, y, z, w)
where of course x, y, z, w, . . . , are chosen to be distinct.

Then we go on to define addition and multiplication. To see
how to do this, we go back to primary school. There we added 3
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Figure 63

and 2 by taking 3 counters, and then 2 more counters, putting
them in a row, and counting the result (Figure 63).
It is important that all the counters should be distinct. If one
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of our 2 counters was already in the set of 3 counters, we would
get the wrong answer!

We can define addition of any two numbers in the same way.
Take two numbers m and . Find sets M and N with these num-
bers (respectively) and such that they are disjoint: they have no
elements in common. (In set-theoretic symbols, M N N = 0.)
Form the union M U N. This has a number: and we define this
to be m+-n (Figure 64).
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Figure 64

Two aspects of this definition require comment. The first is
that we always can find disjoint sets M and N. For if they are not
disjoint, we can change elements one by one until they are; and
the way we change them defines a bijection between the old sets
and the new ones, which ensures that the numbers don’t change.

The second is that addition should be ‘ well-defined’. If we took
different sets M’ and N’ with numbers m and n, would we get the
same result? If not, the definition would be useless. It’s a very
poor definition of addition that tells you 2+2 = 4 if you work it
out one way, and 2+2 = 5 if you work it out the other.

All right: suppose we do pick different sets M’ and N’, disjoint,
with numbers m and n. Then M and M’ have the same number, so
there is a bijection f: M -» M’. Similarly there is a bijection
g:N - N'. But we can fit these together to give a bijection
h:M U N -+ M v N,if we set

f(x) ifxeM
b = {a(x) ifxeN.
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(It is necessary to check that this is a bijection. It is intuitively
obvious from Figure 65.)
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We already have enough information to prove a famous
theorem: that2+2 = 4,

First we must find disjoint sets M and N, each of which has
number 2. From the definition of 2 we may take M = {x, y}.
For N we take the set {a, b} where a, b, x, y are all different. There
is a bijection f: M — N such that f(x) = a,f(y) = b,s0 Mand N
are equinumerous. By the main property of numbers, N has
number 2 as well. Next we form M U N = {x, y, a, b}. Thereisa
bijection g from this to the set {x, y, z, w} defined by g(x) = x,
g(») =y, g(a) = z, g(b) = w. This latter set by definition has
number 4, so M U N has number 4. By the definition of +,
242 =4,

The basis of the argument is illustrated in Figure 66.
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Figure 65
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It is slightly easier to define multiplication, because as it turns
out we don’t need to worry about disjointness. To multiply num-
bers m and n, take M and N with these numbers, and form the
Cartesian product M x N (Chapter 4). Define mn to be the number
of M x N, That this is the right definition becomes clear when we
consider the diagram used in Chapter 4 to illustrate the Cartesian
product (Figure 67).

(It is once more necessary to check that a different choice for
M and N gives the same angwer, but this is not hard.)

pE J

Figure 67

One of the more impressive feats made possible by this line of
approach is that we can prove that the various laws of arithmetic
hold, at least for positive numbers. (The laws for negative num-
bers, rationals, or reals can be deduced from these.)®> As an ex-
ample, take the distributive law

(m+n)p = mp+np.

We take sets M, N, P with numbers m, n, p, such that M and N
are disjoint. Then (m+n)p is the number of the set (M U N)x P,
while mp+np is the number of (M xP) U (NxP). Now it so
happens that these two sets are equal: the first consists of all
ordered pairs (x, y) where x€ M or x€ N and y € P, while the
second consists of all ordered pairs (x, y) where xe Mandye P
or x € Nand y € P. Therefore they are equal. (See Figure 68.)

M

X x x
X x X
X X X
XX><
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M N
P@

(X X R X x)
Since the two sets are equal, there is a bijection from one to the

other: the identity map will do. So the sets are equinumerous, the
numbers are equal, and the law is proved to be true.

Similarly one can prove the other laws of arithmetic.

To end this section, we'll put a new interpretation on the way a
child counts a collection of objects. He points to each object in
turn, and recites, ‘One, two, three, . ...’ If as our standard sets
for defining numbers we took 9, {1}, {1, 2}, {1,2,3}, {1,2,3,4}
(where 1, 2, 3, 4, are just symbols) then this counting looks sus-
piciously like setting up a bijection between the given set and one
of our standard sets (Figure 69).

X X X
X X X

X
X
x
. MP .

(MuN)+P

Fgure 68

{1,2,3,4,5}

Figure 69
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Infinite Arithmetic

Georg Cantor noticed that all of our previous discussion is valid
for infinite sets as well as finite ones. (At no place did we specify
that the sets involved were finite; but our examples were de-
liberately chosen to be finite.) The idea of a bijection makes
good sense for infinite sets, so we can say what ‘equinumerous’
means; and we may then define infinite ‘numbers’ with the pro-
perty that equinumerous sets have the same number, and con-
versely.

To avoid offending people’s finer sensibilities we use a different
word to describe these ‘numbers’: in fact we revamp an existing
word. We call them cardinals (or transfinite numbers). For finite
sets, the cardinal is the number of elements: for infinite sets it has
many properties reminiscent thereof.

The definitions of addition and multiplication also make sense
for cardinals; and the commutative, associative, and distributive
laws hold. However, we have to pay some price for the extension
into the infinite,

One curious property of cardinals was noted by Galileo, in
1638. There can exist a bijection between a set and a smaller sub-
set of itself. The function fwith f(n) = n? is a bijection between the
set N of whole numbers and the subset of perfect squares. An
infinite set can have the same cardinal as part of itself. Euclid’s
dictum ‘the whole is greater than the part’ must be amended to
‘the whole is greater than or equal to the part’ — where ‘equal’
really means ‘equinumerous’.

A nice way to picture this bijection is to modify slightly the
earlier diagrams for functions:

0123 4 5 6 ... n ...
E I T A A I 3
014916 25 36 ... * ...
In a similar fashion there are bijections between N and the set of
even numbers, or odd numbers, or integers, or primes:

oo o 8.
N -
PETEY
(- X "]
00+
-
-
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-2 3 -3 ...

4 5 6 ...

1 11
11317 ...

So all these sets have the same cardinal. The cardinal of the set N
of whole numbers is called o (aleph-zero). Cantor envisaged a
whole system of infinite cardinals §o, 81, {2, - - . » Of which Ro
is the smallest.

A set with cardinal R, is said to be countable (because a bi-
jection with N allows us to ‘count’ it — although we never stop
counting!) Infinite sets which are not countable (and there are such
sets) are called uncountable.

We have just shown that the sets 4 and B of even and odd
numbers are both countable. They are disjoint, and their union
A U Bis N. By the definition of addition for cardinals, the car-
dinal of N is the sum of the cardinals of 4 and B. But N is count-
able too, so we get

No+Ro = Ro.

If we double {, it stays the same size. This is another of the
prices we pay for the inclusion of infinite sets. (Notice that we
cannot deduce that §}o = 0, because we don’t know how to sub-
tract cardinals.)

3
!
7
3
3
2
3
!
7

W -
[VEC N N)

0
3
2

Large and Small Infinities

We can compare cardinals with respect to size. For finite car-
dinals, if we have two sets M and N such that M has fewer
elements than N, then we can find an injection from M to N (asin
Figure 70).

We generalize this. If a and B are infinite cardinals, we say that
a is less than or equal to B if there are sets A and B with cardinal a
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I 3 U
o

(e o o ® o 0o 0)
Figure 70

and p, such that there is an injection f: 4 — B. In other words,
some set with cardinal a can be paired off with a subset of a set
with cardinal B. As usual we write
a< B
Then we say that ais less than fifa < panda # B.
This order-relation on cardinals enjoys several pleasant pro-

olel o

.(i)a < afor any cardinal a.
(ii) Ifa < fand f < ythena < 7.
(iii) Ifa < Band f < athena = B.

Property (iii) is far from easy to prove: it is known as the
Schroder-Bernstein theorem. A proof can be found in Birkhoff
and MacLane.?

So far the only infinite cardinal we know of is {o. Are there
any others?

One might hope that the set of rational numbers, Q, had larger
cardinal: after all, between any two integers there are infinitely
many rationals. But this hope is not substantiated.

Imagine all the rational numbers p/g (¢ # 0) arranged in an
infinite square array:

3/-3 3/—=2 3/—-1 31 32 33 ...
2/-3  2/-2 2/-1 2;1 22 23 ...
/-3 1-2 1j-1 171 2 13 ...
o-3 0/-2 0/-1 01 02 03 ...
—-1/-3 —=1/-2 -1/-1 -1)1 =12 =13 ...
—2/—3 —=2/—-2 =2/—1 =21 =2/2 -=2/3 ...
—3/-3 —3/—2 -=3/-1 =3/t =32 =33 ...

. . .
. . . . .
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Now imagine a spiral path through the array, starting at 0/1
(Figure 71).

Fgure71

By going far enough along this path we reach any rational num-
ber p/g. We can define a function f:N — Q by: f(n) is the nth
distinct rational number along the path. The rule is unambiguous,
so we have defined a function. It is surjective, because the path
reaches every rational. By taking just distinct rationals we make f°
injective. So we have set up a bijection between N and Q. Hence
Qalso has cardinal {Ro.

The first few rationals along the path are 0/1,0/2,1/2,1/1,1/ -1,
0/—1,—-1/—1,—-1/1, —1/2, —1/3, 0/3, 1/3, 2/3, 2/2,...,. There
are repetitions of value: 0/1 = 0/2 =0/—3 =0/3 _o 11 =
—1/—3 = 2/2 = 1, etc. Eliminating these, the bijection goes

01 2 3 4 S5 6 7 8...

1ttt 3 t t &t
0121 -1 =12 =13 13 2/3 2 ...

The pattern in the lower line is not obvious; but we know how to
obtain it from the spiral. It would be hard to find a formula for
the nth rational along the path, but since functions need not be
defined by formulae this doesn’t matter.

Another possible candidate for a cardinal bigger than o is the
set R of real numbers. Since any real number can be approxi-
mated arbitrarily closely by rationals, one might expect the reals
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to have the same cardinal. But this time this is not the case. The
cardinal of the set R ~ for the moment call it ¢ - is larger than §Ro.

This is proved by contradiction. We assume that we can find a
bijection between the whole numbers and the reals. Each real
number will be of the form

A-aya,a;. ..

where 4 is a whole number and each g, is one of 0-9. With
decimals we have to remember that there are ambiguities:
0-100000. . . = 0-0999999. . .. These only occur for repeated Os
or 9s 80 we agree not to use repeated 9s. This makes our notation
unambiguous.

A bijection N — R will look like:

0> A-aya,asa4as. . .
le B'b;bzb;bﬁg. e
26 C'c;c:c;w;. cee
3 HD‘dldzdgwsc .o
4 > E-ejerezeqes. ..

where (in imagination) all the numbers in N appear down the left,
and all the numbers in R down the right.

Now we exhibit a number in R that is not listed on the right. It
will be of the form

02122232425. . .
where we choose g, different from a,, z, different from b,, z5
different from c,, z, different from d,, zs different fromes. .. .
In general z, will be different from the nth decimal place of the
number opposite n—1. To avoid ambiguities, we also choose the
zsnotequal toOor9.

This is a real number. But it’s not equal to the first in the list,
because it differs in the first decimal place. It’s not equal to the
second, because it differs in the second decimal place. It’s not
equal to the third ..., and in general, it differs from the nth
number in the list (which is in row n—1) in the nth decimal place.

So we have found a number not in the list.

But we started out, we claimed, with a complete list.

This is a contradiction. The only possibility is that no such list
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exists, so that there is 7o bijection N — R. This tells us that the
cardinal ¢ of R satisfies

¢ # NRo-
But there is an obvious injection N — R (the identity on N) so that

No<e
Combining these,

No<e
So in the sense of cardinals, there are more real numbers than
rationals, But there are just as many rationals as integers.

So now we bave a new cardinal ¢ bigger than §o. We might
wonder if ¢ is Cantor’s {},. This would be the case if there is no
cardinal smaller than ¢ but larger than o. This problem was
solved by Cohen in 1963, but the solution is so unexpected that
we shall wait until Chapter 20 before saying what it is.

There are cardinals larger than c. In fact, there is no largest car-
dinal: given any cardinal a we can find a larger one.

Take any set 4 with cardinal a. Let P be the set of all subsets
of A. Let S be the cardinal of P. Then we can show that 8 > a.

First note that f(x) = {x} defines an injection 4 — P. So cer-
tainly @ < f. If we had @ = 8 then there would be a bijection
h:A — P. For each x € A the element A(x) is a subset of 4; either
x € h(x) or x ¢ h(x). We define a set Tby

T = {x|x does not belong to A(x)}.

Now T'is a subset of A, so that 7€ P. Since 4 is a bijection there
issome t € Asuch thath(t) = T.

'We ask whether or not 7 € i(?). If so, then 7 € T. But for any
x € T, we know that x ¢ (x), from which it follows that ¢ ¢ A(#).
On the other hand, if ¢ ¢ k() then ¢ passes the entrance require-
ment for T,sothattz € T. But T = k(t)so z € k(f).

Either way gives a contradiction. So our assumption that 4
exists must be false. Therefore 8 # a, and all that remains is

a<p

'We could use this to give a different proof that R is uncount-
able. To each subset S of the integers we can associate a real
number

0-a,a2a;. . .

where g, = 1if n€ S, a, = 2if n ¢ S. Different choices of S give
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different numbers. So we have defined an injection from the sub-
sets of N into the set R. The set of subsets of N has cardinal larger
than o, and so R also has larger cardinal.

Transcendental Numbers

If all that could be done with infinite cardinals was proving
theorems about infinite cardinals, nobody would have been very
impressed by the idea. What forced mathematicians to take
notice of them was the possibility of using them to prove theorems
not about cardinals.

Some real numbers satisfy polynomial equations

a X *+a, 1 x*"1+.. . 4+ap =0
where the coefficients g, are integers. For example, 1/2 satisfies
x3—-2=0.
Such numbers are said to be algebraic. Any real number that is
not algebraic is said to be transcendental.

In Chapter 6 we remarked that all constructible numbers satisfy
such an equation, with rational coefficients: by multiplying
through by the product of the denominators of the coefficients
we can get integer coefficients. So every constructible real number
is algebraic. We also asserted that = satisfies no such equation: in
other words x is transcendental.

For many years mathematicians suspected that x was trans-
cendental, but they could not prove it. Worse, they could not
prove that any numbers were transcendental. Then, in 1844,
Liouville found a proof that such numbers did exist. But it wasn’t
a particularly easy proof. In 1873 Hermite proved that the number
e (the ‘base’ of natural logarithms) was transcendental. Linde-
mann did the same for z in 1882.

But in 1874 Cantor found a very simple way to prove that
transcendental numbers existed, without actually finding any. He

Given a polynomial

a X +a,_ 13" +.. . +ap
we define its height to be
lao]+lay |+ . .+ la,|+n.
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For example, the height of the polynomial x2 —2 is
|=2|+ 1|42
=2+142
=35
Every polynomial, with integer coefficients, has finite height.
More interestingly, there are only a finite number of polynomials
with a given height k. Because the degree n must be < A, and there
are only the possibilities —4, —4+1,...,—1,0,1,2,...,A for
each coefficient ; making at most
Qh+1p+
polynomials of height 4. (It would be possible to give better
estimates than this, but for our purposes any estimate will do.)

We may therefore write out all possible polynomials with
integer coefficients in a sequence: first we list those of height 1 (in
any order), then those of beight 2, then height 3, and 30 on. Be-
cause there are only finitely many polynomials of each height, the
sequence does not get stuck forever at some fixed height, and so
all polynomials appear somewhere in the sequence.

The polynomials of height 1 are just 1 and —1. Those of
height 2 are 2, —2, x, —x. Thoee of height 3 are 2x, —2x, x+1,
x—1, —x+1, —x—1. So the sequence starts off :

1, -1, 2, =2, x, —x, 2x, —2x, x+1, x—1, —x+1, —x—1,....
Let the nth polynomial in this sequence be p,(x), so that the
sequence now takes the form

P1(x), Pa(x), Pa(X); o o o, PYFD, oo oo
Every polynomial with integer coefficients occurs in this sequence.
The algebraic numbers are precisely the roots of the equations
Pi(x) =0.

If the degree of the polynomial p(x) is d, there are at most droots
of this equation. So we can arrange the roots in a sequence

ees Gy
If we fit all these short sequences together, one for each poly-
nomml;mp,(x),wesetanewsequmeoomamg' ing every algebraic
num|

ph 'ﬁuﬁu-h 'ﬁp "'!ﬁb .ﬁu

roots of roots of roots of
() =0 pi(x)=0 Px) =0
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Of course, any given algebraic number may occur more than once
in this sequence.

Now, for any whole number m we define f(m) to be the
(m+1)-th distinct algebraic number along the sequence. This
makes f a function from N to the set of algebraic numbers.
Because every algebraic number occurs in the sequence, f is
surjective. By choosing distinct algebraic numbers, we make f
injective. So fis a bijection, which means that the set of algebraic
numbers has cardinal {}o. The algebraic numbers form a count-
able set.

But we know that the real numbers form an uncountable set.
So some real numbers are not algebraic. This proves the existence
of transcendental numbers.

In brief : transcendental numbers must exist, because there are
more real numbers than algebraic ones.

This is a pure existence proof. It does not tell you one single
transcendental number. It gives no clue, for example, as to the
status of z. What it does is show that it is impossible for there not
to be transcendental numbers.

In fact it shows that there are more transcendental numbers
than there are algebraic. Because if there were only o tran-
scendentals, the fact that every real number is either algebraic or
transcendental would mean that

Ro+Ro =¢
where ¢ is the cardinal of R. But we already know that {¥o+{Ro =
o, which is not equal to c.

Prior to Cantor’s theorem, mathematicians had become
accustomed to thinking of transcendental numbers as being very
rare, because they seldom seemed to use any. It came as a con-
siderable shock to discover that they are extremely common: that
almost all real numbers are transcendental. If you could pick a
real number at random, you would be virtually certain to pick one
that was transcendental,



Chapter 10 Topology

“A topologist : isn’t that who
stuff's monkeys?* - Traditional

One of the most unexpected developments in twentieth-century
mathematics has been the meteoric rise of the subject known as
topology. Topology is sometimes described as ‘rubber-sheet
geometry’, a whimsical and somewhat misleading description
which nevertheless succeeds in capturing the flavour of the sub-
ject. Topology is the study of those properties of geometrical
objects which remain unchanged under continuous transformations
of the object. A continuous transformation is one in which points
‘close together’ to start with are “‘close together’ at the end of the
cycle of transformation, such as bending or stretching. Tearing
or breaking are not allowed. (There is, however, one caveat: since
we are talking about transformations we are not interested in
what happens anywhere except the beginning and the end. It is
therefore permissible to introduce a break at some point provided
it is eventually joined up again in the same way. For example we
can untie a knot by cutting the siring, undoing the knot, and then
making the string whole again. This is why the ‘rubber-sheet
geometry’ description is misleading.) It is possible to set up the
definition of ‘continuous’ in a precise fashion, but we shall stick
to the intuitive idea here. The question is raised again in Chapter
16.

What sort of properties are topological? Not the usual ones
studied in Euclid’s geometry. Straightness is not a topological
property, for a line may be bent and stretched until it is wiggly.
Neither is the property of being triangular: a triangle can be con-
tinuously deformed into a circle (Figure 72).

Soin topology triangles and circles are the same thing. Lengths,
sizes of angles, areas — all these can be changed by continuous
transformations, and must be forgotten. Few, if any, of the cus-
tomary concepts of géometry, remain in topology and new ones
nust be sought. This makes topology hard for the beginner until
he gets the idea.
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Anarchetypal topological property is that displayed by a certain
kind of doughnut: baving a hole. (Not the least subtle aspect of
the matter is the fact that the hole is nor a part of the doughnut.)
No matter how one continuously distorts the doughnut, the hole

A0
520

remains. Another topological property is the possession of an
edge. The surface of a sphere has no edge, that of a hollow hemi-
sphere does; and no continuous transformation will alter this.

Because continuous transformations are so varied, topologists
make fewer distinctions. Anything having one hole will be much
the same as anything else having one hole (as the next section
illustrates). The topologist consequently has fewer objects to
look at. The subject-matter is simpler than in most other branches
of mathematics (although the subject itself is not). This is one of
the reasons why topology has become a powerful tool, with ap-
plications throughout the whole of mathematics: its simplicity
and generality make it widely applicable.

Figure72
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Topological Equivalence

The basic objects studied in topology are called topological spaces.
Intuitively we should think of these as geometrical figures.
Mathematically they are sets (often subsets of Euclidean space)
endowed with some extra structure called a topology which allows
us to set up an idea of continuity. The surface of a sphere, of a
doughnut (more properly a forus) or of a double torus are all
topological spaces (Figure 73).

8

Two topological spaces are fopologically equivalent if we can
pass from one to the other in a continuous way, and also come
back in a continuous way. The oft-quoted assertion that to a
topologist a doughnut is the same as a coffee-cup provides an
example (Figure 74).

oeco

In terms of set theory we start with two topological spaces 4
and B, and ask for a function f:4 — Bsuch that

Figure 73
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() fis a bijection;

(ii) fis continuous;

(iif) the inverse function to fis also continuous.
The reason for wanting both fand its inverse to be continuous is
the following. If we take two separate lumps and squash them
together we get a continuous transformation (Figure 75) because

O~
Od

points originally close to each other remain so0. But the inverse
transformation takes one lump and pulls it into two separate
pieces (Figure 76) so is not continuous, because points close to
each other but on opposite sides of the dividing line end up

Qs
Oz

Fgure75

Figure 76

As an exercise try to classify the topological spaces shown in
Figure 77 into topologically equivalent types.*

Some Unusual Spaces

If all topological spaces were as nice as the sphere and torus
there would be little of interest in topology. A few instances of
more exotic behaviour may help to tickle your intuition,
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You have probably heard of the Mabius strip (or band), which
can be made by taking a strip of paper and joining the ends with a
180° twist as in Figure 78.

This is topologically distinct from an untwisted cylindrical
strip. It has exactly one edge. (Count it.) Since the number of
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Figure 78

edges is a topological property, and since the cylindrical strip has
two edges, the two strips are topologically inequivalent.

A more famous property of the Mdbius strip is that it has only
one side. A cylindrical strip could be painted red on one side, blue
on the other. If you try to do this with a Mébius strip the two
colours will run into each other somewhere.

Unfortunately it is difficult to make the one-sidedness mathe-
matically respectable in a natural way. The strip has no thickness:
every point of it is ‘on’ both sides, in the same way that every
point of the plane is ‘on’ both sides. For the purposes of topology
we must consider the strip as a space in its own right, rather than
as a subset of Buclidean space, and it then becomes hard to see
whether the number of sides is a topological property.

To make this clearer, let me ask a question: how many sides
does three-dimensional Euclidean space have?

Most people, I think, would answer ‘none’. It just goes on and
on in every direction: how can it have any sides?

But suppose now that you are a flatlander, living in the two-
dimensional plane, unaware of anything else. How many sides
does your ‘space’ have? If you answered ‘none’ before then you
must surely answer ‘none’ again: the plane just goes on and on in
all directions,

In other words, the number of sides you are aware of depends
on whether you think of the plane in its own right, or as a part of
three-dimensional space. The same is true of three-dimensional
space: if we think of time as a fourth dimension it has two sides -
the past, and the future.

1 hope you can see that it is now beoming rapidly more difficult
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even to define what we mean by the number of sides, let alone to
see if this is a topological property.

However, there is a phenomenon which a hypothetical race of
creatures living on a Mébius band could observe without bringing
in any external considerations, and which provides a useful
mathematical substitute for ‘one-sidedness’. Assume that these
creatures have two hands, with the thumbs pointing in different
directions; they will have the concept of ‘left’ and ‘right’. Fur-
thermore let us suppose that they wear mittens (Figure 79).

)

Onecold momingone of our creatures awakes, tofind thathe has
mislaid all of his right-hand mittens and has only left-hand ones.
Being a resourceful beast, he takes one mitten and transports it
around the strip, as in Figure 80.

Much to oursurprise, though not to his, it turns into aright-hand
mitten. Of course, his right hand has become a left hand and his
left hand a right: but in any case he now has a serviceable pair of
mittens,
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You can check this property by drawing on a paper Mobius
band. But to take account of points being ‘on’ both sides of the
paper it is necessary to look rhrough the paper, either by holding
it up to the light or by using a strip of transparent plastic in place
of paper. Alternatively you can check it using your two hands and
an imaginary Mdbius band. Since your hands are not two
dimensional, concentrate only on their outlines. Hold them in front
of you, with the palms facing away, thumbs side by side, and
fingers pointing upwards. Leaving the left hand fixed you must
now move the right hand around an imaginary Mébius band, as
follows. Lift your right elbow, tilting the right palm to the hori-
zontal. Rotate the right thumb down and away from you until the
hand is on edge with the thumb at the bottom. Lift the elbow still
higher until the fingers point downwards and continue to rotate
the hand in the same direction as before until the back of the hand
faces you. Keeping the elbow raised and the fingers pointing down,
with the back of the hand towards you, move the whole hand to
the left until it is level with your left hand and on the far side of it.
Now - and this requires a supple wrist — turn the thumb away
from you until the right hand is edge on. Ideally now you should
continue to rotate the right hand, but this is not anatomically
feasible. Instead, rotate the Jeft thumb towards you, until the two
hands are side by side with the little fingers together: the left one
pointing up and the right down.

You have now reached a very uncomfortable position which
corresponds to having moved your right hand once around a
MGabius band (and the left round the other way a little to meet it).
For extra comfort, keep the two hands in the same position rela-
tive to each other, but move the right hand back a little towards
the right and let the left hand follow it round towards the centre
and away from you. Now you must turn the right hand upside
down by rotating it on the surface of the Mdbius band. To do this,
bring the right elbow down to your side, keeping the right palm
facing away from you. You should now have both hands pointing
upwards, side by side, with the left palm facing towards you and
the right palm away from you. Finally, move the two palms
together: the hands fit neatly with the thumbs overlapping. As
far as the owtlines of the hands are concerned, you have now
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turned your right hand into a left hand by moving it around a
Mébius band. (You also have a magnificent example of the style
of mathematics known in the trade as ‘handwaving’.)

A creature living on a two-sided world (this includes us, as far
as we can tell at the present time) cannot perform the mitten
trick.? To him, left and right cannot be interchanged. But to a
Mobius beastie, the very concepts of left and right have a signific-
ance only if objects are not mnoved around. It is not possible to
define leftness and rightness consistently over the whole Mébius
band. It is said to be non-orientable. A space such as ours, in which
a global definition of left and right can be made, is said to be
orientable. Orientability corresponds to two-sidedness and non-
orientability to one-sidedness; and both are intrinsic topological
properties independent of any external space.

If two M&bius strips are joined edge to edge the result is known
as a Klein bottle (Figure 81).

Figure 81

It has no edges, and is non-orientable because the Mbius bands
are non-orientable. However, it cannot be embedded in space of
three dimensions without crossing itself.

Another way to describe it is to imagine a square, whose edges
are glued together as in Figure 82, so that corresponding arrows
overlap. (First join the top and bottom, getting a cylinder. To fit
the ends together the right way round, bend the cylinder and push
it through itself.) You can use this diagram to check that it really
is two Mdbius bands edge to edge: cut it up again as in Figure 83.

Statements (frequently made) about the inside and outside of a
Klein bottle are nonsense. It cannot be constructed in three-
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Figure 82

dimensional space. In four-dimensional space (which we discuss

in Chapter 14) it can be made without any crossings; but now
the ideas of ‘inside’ and ‘outside’ make no more sense than they

AN

do for a circle in 3-space: one can pass from one to the other with-
out encountering any obstacles.

Two other interesting spaces can be obtained by gluing up the
edges of a square: the torus, and the projective plane (so named
because of connections with projective geometry), shown in
Figure 84.

& torus k#%‘?’ew
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The torus we already know about: we note that it is orientable.
The projective plane, like the Klein bottle, has no edges, is non-
orientable, and won’t embed in 3-space.

The projective plane is a Mobius strip and a disc sewn edge to
edge. To do this in 3-space we have to twist the Mobius strip
around to get its edge circular, and it then intersects itself, form-
ing a cross-cap (Figure 85).

aed T T

S

. —

The projective planeis a cross-cap with the hole filled in (Figure

As a final curiosity, there is the Alexander Horned Sphere
(Figure 87).

This is made by pushing out two horns from a sphere, twisting
them together, splitting the ends, twisting these together, splitting
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Figure 87

again, twisting again, and so on indefinitely; getting smaller and
smaller at each stage. It is topologically equivalent to a sphere,
believe it or not: the way the horns are pushed out can be used to
define a suitable function. However, the space outside it is not
topologically equivalent to the space outside an ordinary sphere.

N

]

For outside an ordinary sphere any loop can be slid off (Figure
88), whereas for a horned sphere the loop may get entangled in
the horns (Figure 89). Once again the trouble is caused by the
surrounding space rather than the sphere itself.

Figure 88
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Figure 89

The Halry-Ball Theorem

Those are a few of the concepts and objects studied by topology:
now we'll ook at a theorem.

If you look at the way the hairs liec on a dog, you will find that
they have a ‘parting’ down the dog’s back, and another along the
stomach. Now topologically a dog is a sphere (assuming it keeps
its mouth shut and neglecting internal organs) because all we have
to do is shrink its legs and fatten it up a bit (Figure 90).

Figure 90

Onemight wonder whetheritis possible to combthe hairsin such
a way that all partings were eliminated. This would give a smooth
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Rairy ball, with none of the arrangements of hairs shown in
Figure 91.

T S

This is a question for topology, for if we deform the ball con-
tinuously, a smooth system of hairs will stay smooth, and a parting
will stay a parting. Using topological methods it can be shown
(not easily) that no perfectly smooth system of hairs exists. (The
problem is more properly posed as one about ‘vector fields’ on a
sphere, but the intuitive idea of a hairy ball gives the right feel.)
The best that can be done is to comb the hairs so that everything
is smooth except at one point, as in Figure 92.

q'
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Figure 92

Idon’t propose to go into the proof. But the value of the result
extends far beyond whimsical applications to hypothetical
smooth dogs.

The surface of the earth is a sphere. The direction in which the
surface winds are blowing, at any specific moment in time, gives
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a way of combing this sphere, with the flow-lines of the wind
taking the place of hairs. The theorem says that no smooth
system of winds exists (other than no wind at all which is im-
possible for other reasons), so that there must always be a cyclone
somewhere.

Thus a knowledge of the shape of the earth allows us to draw
conclusions about wind-patterns without any knowledge at all
about the true behaviour of winds.

On a toroidal planet, stable smooth winds could exist, because
a hairy torus can be combed smooth (Figure 93).

Figure 93

A deeper study, using more about winds, reveals that a more
likely flow would be one winding around the torus as in Figure 94.

This is not the end of applications of the hairy-ball theorem.
It has one application to algebra: it can be used to prove that
every polynomial equation has solutions in complex numbers
(the so-called ‘fundamental theorem of algebra’).



Chapter 11 The Power of
Indirect Thinking

Ploughing straight ahead is not always the quickest way to make
progress. It may be better to go round an obstacle rather than
charge headlong into it. It is much the same in mathematics. Often
a problem can seem insurmountable. You may even have a good
idea of what the answer should be, but be unable to find any way
of making certain. In these circumstances a fresh viewpoint, a new
idea, can make all the difference.

How does one obtain a fresh viewpoint?

An explorer travelling through dense jungle usually has little
idea of anything other than his immediate surroundings. If he
comes to a mountain, he must climb it; a river, he must swim. But
later, when people start to build roads through the jungle, they
don’t always follow the explorer’s footsteps. They will have maps.
They will say, ‘Here is a mountain, there is a river,’ and they will
find ways to build the road round the mountain, and the best
place to build a bridge over the river. If the explorer could have
taken a more comprehensive view of the area — perhaps flown
over it in a plane — he would have saved himself a lot of wasted
effort: it might even have enabled him to succeed where he would
otherwise have failed.

In mathematics it is too easy to concentrate very hard on one
specific problem. If your methods are not good enough to handle
the problem, you will eventually grind to a halt, baffled and
defeated. Often the key to further progress is to stand back,
forget about the special problem, and see if you can spot any
general features of the surrounding area which might be of use.

Networks

There is an old puzzle which in one form concerns three houses,
each of which must be connected up to supplies of water, gas, and
electricity (Figure 95).
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Can this be done in such a way that the connections do not cross
each other, or pass through the houses or the sources of supply?

If you sit down with a pencil and paper, you will soon find that
there is no apparent solution. But if you try to prove no solution
exists, you run into a problem: there are so many possible ways
of trying to draw the lines. Perhaps it would be helpful to have
one of the lines loop around six or seven times first. It doesn’t
seem to be: but you can’t see any way to show that it isn’t.

This is exactly the sort of situation discussed in the introduc-
tion. The best way to proceed is to sit back and take a good look
around.

The problem is not really about houses. It wouldn’t matter if
they were bungalows or blocks of flats. Nor would it matter if the
source of electricity were next door, or a thousand miles away.
Stripped of its picturesque language, the problem becomes that of
starting with two sets, each of three points in the plane, and join-
ing each point in the first set to each point in the second set with
lines that do not cross.

Such questions come within the domain of mathematics known
as graph theory, or the theory of networks.

A network has two main parts:

(i) a set N, whose elements are called nodes or vertices,
(ii) a way of specifying when two vertices are joined to-
gether.

We could make this abstract definition more respectable using
set theory. But it is much easier to grasp the ideas involved by

Figure 95
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representing the vertices as dots, and joining them up by lines.
The lines will be called the edges of the network. The precise dis-
position of dots and lines is not important; what is important is
that the connections should be correctly made.

The diagrams in Figure 96 represent basically the same network.
(Only the crossings marked with circles count.)

A D

Each network has 4 vertices, with all possible pairs joined. One
diagram can be turned into the other by moving dots and lines
around, as in Figure 97.

A-DeelX

It is not even necessary to use straight lines; the same network is
represented by the arrangements in Figure 98.
It is the topological structure of the network that is important,

RV
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It is not always possible to draw networks with no lines cross-
ing. Networks which can be drawn without crossings are called
Pplanar networks - they can be drawn in the plane.

The puzzle with which we started can now be rephrased: Is the
network of Figure 99 planar?’

Figure 99

Before we can provide a satisfactory answer we must study the
properties of planar networks.

Ealer’s Formula

A path in a network between vertices @ and b is what one would
expect: a sequence of edges, starting at a and ending at b, such
that each edge ends where the next one begins. In Figure 100, a
and b can be joined by a path.

c
< ;Jb @
a
Figure 100
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On the other hand, aand c cannot be joined by a path, becausec
lies in a part of the network which has no connections with the
piece in which a lies. A network in which any two points can be
joined by a path is said to be connected. That means that it does
not fall into two (or more) distinct pieces. Any network is made
up of connected pieces.

For this reason it is usual to confine attention to connected net-
works; more general ones can usually be dealt with by looking at
the connected pieces.

The type of network we shall discuss from now on will be
finite and connected. By ‘finite’ we mean that the number of
vertices and edges is finite. Such a network is shown in Figure 101,

Fgure 101

Any such network divides the plane into a number of regions,
which we shall call the faces of the network. The one in Figure 101
has 8 faces. It has 14 vertices and 21 edges.

A network of the kind we are interested in (finite, connected,
planar) resembles a map of an imaginary island; and to avoid
cumbersome terminology we shall use the word map when re-
ferring to such a network.

At this point you should draw a few maps; and count the
numbser of faces (F), vertices (¥), and edges (E). Here are three to
start you off (Figure 102).
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Tabulate your results like this:
F Vv E
8§ 14 2
4 6 9
4 6 9
6 10 15

oo eee o

Can you spot any connection between these numbers?

You might notice that E is always the largest. F and ¥V are
smaller, but between them come to much the same size: 22, 10, 10,
16in the table above. These are all 1 larger than the corresponding
E. So it looks as if

F+V = E+1
or

V—E+F=1 (V)]
for any map.

The first person to prove that this formula does in fact hold for
any map was Euler (1707-83). On the face of it, there is no very
good a priori reason to expect any relation between F, ¥, and E;
but anyone who took the trouble to count them for a dozen or so
maps would eventually observe that (1) seems to be true. Not that
this helps us to prove it.

With hindsight, there is a considerable clue in the expression
V—E-+F. It is the same for all maps. In particular, if we change
one map into another one, it remains unaltered.
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There are various ways in which ¥—E+F can remain un-
changed, but two of them are simpler than the others. The first is
if E and F both decrease by 1. Then their difference doesn’t alter,
80 that ¥—E+F doesn't alter either. The second is if ¥ and E
both decrease by 1.

The first situation occurs if we erase from a map a face which is
on the outside, together with one outside edge. If you like, we
remove a stretch of coastline, together with one face, as in Figure
103,

copes

The second situation occurs if we have a single vertex ‘dangling®
at the end of an edge, as in Figure 104,

&-&8

These operations are known as collapses. What we have
noticed is that ¥—E+-F is unaltered by either type of collapse,
and hence unaltered by any sequence of collapses.
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Imagine the island to be surrounded by an angry sea. Bit by bit
it erodes the coastline away, causing one or other kind of collapse.
‘While this is happening ¥—E+-F remains serenely unchanged.
The sea continues its work bit by bit . . . until there is no island
left.

Did I say noisland? That was hasty. Let’s try it out (Figure 105)

@A 4 A A

Qa 0 ¢ ¢ .

In fact, we reduce the island to a single point. 1 vertex, 0 edges,
Ofaces. So for this, V—E+F = 1—0+0 = 1. But ¥—E+Fisnot
changed by collapses. So for the original island, we mustalso have
had V—E+F=1!

This, in flowery language, is essentially a proof. Every map can
be collapsed to a point without changing ¥'—E+F, and for a
point this takes the value 1. So () holds for any map.

This formula — Euler’s formula - is extremely useful in a sur-
prising variety of situations. Our first application will be to the
problem of the houses and the utilities.

Non-Planar Networks

The problem, once again, is: is the network of Figure 99 planar?

We apply what in chess language might be termed ‘the
mathematician’s gambit’ : we concede that it might be planar. On
the basis of this concession we try to deduce a contradiction: it will
then follow that it isn’s planar after all.
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The network has ¥ = 6, E = 9. We can’t work out Fbecause it
isn’t drawn on the plane. But if it were, then however it was drawn,
it would have Ffaces, where

6—9+F=1.
Sowemusthave F = 4.

Now we have to work out where the faces will come, without
actually drawing the network on the plane.

Each face of a planar map is surrounded by a closed circuit, or
loop, of edges, as in Figure 106,

Figure 106

The perimeter (‘coastline’) forms such a loop. Now in Figure
99 the closed loops contain either 4 or 6 edges, as you should
check. If it is drawn on the plane it will have 4 faces, each with
either 4 or 6 edges; the different possibilities being

4 4 4 4
4 4 4 6
4 466
4 6 66

6 6 6 6

Now let’s count the edges a different way. Each edge lies on 2
faces, except for the ones round the outside. If we pretend that the
outside is an extra very large face, it also has 4 or 6 edges; and we
now have 5 faces
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4 4 4 4

LS

4446
4466
4666
6

6 6 6

- T N R

6 6 66

such that each edge touches 2 faces. So the sum of the edges of
the faces is twice the number of edges altogether. In the above
cases the number of edges must therefore be (respectively) 10, 11,
12, 13, 14, 15. But we already know that E = 9.

This is a contradiction, so the assumption of planarity was
false. The network is not planar; and the ‘mathematician’s
gambit’ has payed off again. It follows that the puzzle cannot be
solved using lines that do not cross, or go through houses or
sources of supply.

The great thing about this proof is that it makes no mention of
any possible ways of attempting to draw the connections. It by-
passes all such considerations by admitting that there might be
some way of making the joins, and then showing that there are
none.

In a similar way we can deal with the network of Figure 107,

For this, ¥ = 5 and E = 10, so F would be 6if the network were
planar. Now every face must have at least 3 edges. If we throw in

Fegure 107



The Power of Indirect Thinking 169

an extra face around the outside the sum of the number of edges
of the faces is twice the number of edges: this sum is at least
3.7 = 21, so the number of edges is greater than 10. But we know
already that E = 10, a contradiction. So this network too is non-
planar,

These two networks are important as prototypes for all non-
planar networks. Kuratowski has proved that any non-planar net-
work must contain within it one of these two. The result is not
hard, but it takes several pages of case-by-case analysis, and we
shall not go into the matter.!

The problem of planarity of a network has some practical ap-
plications to electronic circuits — particularly printed circuits and
microminiature integrated circuits - but other considerations
enter: the lengths of the connections may be important, and com-
ponents can interfere with each other without actually touching.

Another Application
Euler’s formula can be used to yield almost everything known
about the famous (infamous?) four-colour problem: given a map,
can it be coloured with 4 colours so that no 2 faces which touch
along an edge have the same colour?

Certainly 4 are necessary (Figure 108), and it is possible

Figure 108

to show that no map can have 5 faces, each touching the other 4
(along an edge). However, this does not prove that 4 will always
be enough.

The best that is known is that 5 colours will suffice. The gap
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between 4 and 5 has never been filled.* (Before you rush off to try,
let me warn you that the problem is extremely subtle. I expect it
to succumb only to a very deep understanding of planar networks.)

By ‘map’ I have so far meant a map on the plane, in our pre-
vious sense. The problem for a plane has the same answer as the
analogous problem for maps on a sphere, because of what we
might call the ‘orange-peel trick’. Given a map on the sphere, we
make a small hole inside one of the faces, whereupon it can be
pulled open into a planar map. Conversely, a map on the plane
can be folded around a sphere to give a map on the sphere, with
the region outside the original map forming an extra face.

In consequence, if every map on the plane can be coloured with
4 colours, the same is true for the sphere, and vice versa. It
happens to be more convenient to talk about the sphere, for the
same reason that we introduced an extra face outside the map in
the previous section. The extra face means that on a sphere we
have

V—E+F=2

We shall now prove that 5§ colours are enough to colour any
map on the sphere (and hence on the plane). The proof will pro-
ceed as follows: we find ways to modify any given map which
reduce the number of faces, so that from a 5-colouring of the
reduced map we can reconstruct a 5-colouring of the original. By
reducing often enough we get down to a map with 5 or fewer
faces, which can obviously be 5-coloured; working backwards
gives a S-colouring of the original map.

(i) We can eliminate vertices where more than 3 faces
touch. For if 4 or more do, some pair of them do not touch
anywhere else, and we can merge these (Figure 109). If the

~ b ble

* It has now. See Appendix, p. 300.
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new map can be S-coloured, so can the old: we colour the 2
old regions the same as the single new one.

If the vertex we started with was surrounded by a large
number of faces, we would have to reduce several times be-
fore getting down to only 3 faces.

(ii) We can remove 3-sided faces by merging them with a
neighbour (Figure 110).

A A

From a colouring of the new map, we can S-colour the old by
choosing a different colour for the 3-sided face from the 3
colours around it.

(iii) Similarly we can merge any 4-sided face with a neigh-
bour (Figure 111). With 5 colours around, there is still one
left to colour the merged face.

>

(iv) We now have a map on the sphere, all of whose faces
have at least 5 edges. We prove that at least one face must
have exactly 5 edges.

If the map has ¥ vertices, E edges, and F faces, we know

Figure 110

Figure 111
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that each vertex lies on 3 edges (by step (i)). And each edge
lies on 2 faces. So we have

3V =2E=aF
where a is the average number of edges to a face. Since
V—E+F =2
we have
a. a
CF-SF4F =
3F 2 +F =2
80 that
12
a=6 F

which is less than 6. If the average number of sides per face is
less than 6, then some face must have less than 6 edges. But
every face has § or more edges. So there must be a face with
exactly 5 edges.

(v) Consider such a S5-edged face P, having neighbours
O, R, S, T, Uasin Figure 112,

Figure 112

Some pair of neighbours do not touch - and we can arrange
our notation so that they are Q and S. Now merge all 3
regions P, O, S (as in Figure 113).

If the resulting map can be 5-coloured, 80 can the original
one: in the merged map Q and S have the same colour, so
there are only 4 colours surrounding P, which leaves one

spare,
(vi) Since the number of faces decreases with each merger,
we eventually get a map with 5 or fewer faces. This obviously
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Figure 113

can be S-coloured: all we do is pick a different colour for
each face.

Reversing the steps, we find we can 5-colour the original map.

To recap: we apply a reduction process to the original map,
gradually making it less complicated. We do this in such a way
that at each stage we can colour the old map provided we can
colour the new one. The proof ensures that eventually the new
map can be coloured: 8o the previous one can, then the one before
that . .. and eventually we find out how to colour the original
map.

To see how this works out in practice, draw yourself a map (not
too many faces!), follow the reductions through, and find a way to
colour it.

On surfaces other than the sphere the analogous problem has
been completely solved. We discuss this briefly in Chapter 12. But
for the sphere, the simplest kind of surface, all that is known at
the present time* is that 5 colours suffice and 4 are necessary.

In a way it would be a pity if the problem were solved. It is a
supreme example of a problem which is very easy to state, and
incredibly hard to answer.

¢ No longer. See Appendix, p. 300.



Chapter 12 Topological Invariants

“The true traditional doughnut has the
topology of a sphere. It is a matter of
taste whether one regards this as having
Sseparate internal and external surfaces.
The important point is that the inner
space should be filled with good
raspberry jam. This is also a matter of
taste'- P. B, Fellgett

It is usually not too hard to prove that two given topological
spaces are topologically equivalent (assuming this to be the case).
All we need do is exhibit a suitable function between them.

Much harder is a proof that two inequivalent surfaces are
inequivalent. We have to show that, out of a potentially infinite
number of possible functions, no suitable one exists. The two
spaces of Figure 114 (in which we are thinking of the surfaces,
not the insides) are obviously topologically different. Yet how to
proveit?

oY/

Figure 114

'We can see that the torus has a hole in it, and the sphere does
not. But the problem is that the hole is not in the torus at all, it’s
in the surrounding space. And we know that it’s dangerous to
draw conclusions that could depend on the surrounding space. As
a topological space in its own right, the torus does not contain
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anything that we could call a hole. The hole is not a part of the
torus that we see.

One way to distinguish between inequivalent topological spaces
is to find some ropological property which one has and the other
hasn’t. For example, every closed curve on a sphere divides it into
two pieces (Figure 115), but on the torus there exist closed curves
which do not cut it into separate pieces (Figure 116).

AN\)

Figure 115

D

Figure 116

The properties: closed curve, connected, disconnected are
topological; which proves that the two spaces, sphere and torus,
are topologically distinct.

By refining this technique we could distinguish between, say, a
surface with 19 holes and one with 18, but the details would be
very messy and not terribly satisfying.

Exuler’s Formula Generalized

The property of the sphere, that for any map V—E+F = 2, is
topological. Any continuous transformation applied to a sphere
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m;formngwenmpmtoonewnhthesameva]mof V, E,and
Ifwetrydmmngmpsonthetorus, we find that V—E+Fis

no longer 2. For the map in Figure 117 we have ¥ =4, E = 8,
F =4,sothat

V—E+F=0.

Figure 117

Thesameequation holdsforany other map on the torus, for much
the same reason that Euler’s formula was true for any map on the
plane or sphere. This property of maps on a torus is also topo-
logical.

We can generalize this formula to a wide range of topological
spaces, known as surfaces.

Both the sphere and torus can be triangulated, that is, covered
with triangles which fit together along their edges (Figure 118).

D¢

Figure 118
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Itdoesn’t matter that the triangles are not flat, or that the edges
aren't straight: all we need are bits which are topologically
equivalent to ordinary triangles.

Any space which can be built up from a finite number of
triangles, so that any pair which touch do so along a single edge,
or at a single vertex, is said to be triangulable. A surface is a topo-
logical space which is

(i) triangulable,
(ii) connected (i.e. all in one piece, as for networks),
(iii) without any edges.

Examples of surfaces include the sphere, torus, Klein bottle,

and projective plane: Figure 119 shows a triangulation of the
projective plane.

Figure 119

‘The Mébius strip is not a surface in this sense, because it has an
edge. The plane is not a surface, because it cannot be built up
from a finite number of triangles.

On any surface we can draw maps, as we did on the sphere,
and we can count the faces, edges, and vertices. For a given sur-
face S the number ¥—E+-F can be shown to be independent of
which map we choose. It is known as the Euler characteristic of
the surface, and is denoted by x(S). Because it does not depend on
the choice of map, it is the same for topologically equivalent
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spaces: in consequence it is a topological invariant. (A topological
invariant is anything that is the same for topologically equivalent
spaces.)

Another topological invariant is orientability. The torus cannot
be topologically equivalent to the Klein bottle, because the torus
is orientable and the Klein bottleisn’t.

These two invariants: Euler characteristic and orientability,
suffice to distinguish all the different surfaces we have so far en-
countered:

s | (S | orientablo?

sphere 2 yes

torus 0 yes

double torus -2 yes

projective plane 1 no

Klein bottle 0 no
Constracting Surfaces

Our eventual aim will be to classify all the possible surfaces, up to
topological equivalence. The first step is to construct a set of
standard surfaces.

The technique we use to construct them is known as surgery:
cutting spaces up and then gluing them together again. It is very
useful in topology.

Standard orientable surfaces are formed by sewing handles on
spheres. If we sew on no handles, we get a sphere. To sew on a
handle, we cut two holes out of the sphere and sew in a cylinder,
whose edges are joined to the edges of the holes (Figure 120).

One handle gives a torus, two handles a double torus, and soon.
The standard orientable surface of genus n is a sphere with n
handles sewn on. (The word genus just gives us a peg on which to
hang the number n.)

Standard non-orientable surfaces are obtained by sewing on
MGobius strips. To do this, cut one hole in the sphere. This has a
single circular edge: the Mdbius strip also has a single circular
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edge, and we join them up. If you try to do this in 3-space the
Mobius band has to intersect itself, forming a cross-cap. But
abstractly there is no cause for alarm (Figure 121).

Sewing on one Mobius strip gives a projective plane (as in
Figure 86), Sewing on two gives a Klein bottle, much as in Figure
83.

‘The Euler Characteristic of a Standard Surface

Our next step is to calculate the Euler characteristics of our
standard surfaces. For the orientable case, we work as follows:
we may assume that the two discs cut out of the sphere are faces of
amap, part of which is shown in Figure 122,

For this map, ¥—E-+F = 2, because we are on a sphere. Now,
adding a handle as in Figure 123 changes this: we lose 2 faces on
the sphere but gain 2 faces on the handle, the vertices do not
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Figure 122

change, and we gain 2 edges. The net result is to decrease the

Euler characteristic by 2. The same thing happens for each handle

we add, so by adding n handles we decrease by 2n. Therefore, the

Euler characteristic of the standard orientable surface of genusris
2—-2n,

Figure 123

In particular, this proves that standard orientable surfaces of
different genus are not topologically equivalent, because they have
different Euler characteristics.

Next we turn to the non-orientable case. We can assume that
the disc removed is part of a map looking like Figure 124,

Figure 124
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If we sew in a MGbius strip as in Figure 125 we find that we lose
1 faceon the sphere, gain 1 face on the strip, and gain 1 edge onthe
strip. So this time the Euler characteristic decreases by 1 for each

Figure 125

Mobius strip. For the standard non-orientable surface of genus n
the Buler characteristic is

2—n.
Again, this suffices to distinguish between the standard non-
orientable surfaces.

The two invariants, Euler characteristic and oriesitability, be-
tween them show that all our standard surfaces are topologically
distinct. We shall now show that any surface is topologically
equivalent to one of the standard ones.

Classifying Surfaces

The method of proof we shall use is due to E. C. Zeeman.! We
use surgery to chop up a given surface into a number of pieces,
which we can then reassemble into a standard surface. The chop-
ping-up and reassembly will be done in a way which gives topo-
logical equivalence: we always join up pieces along the same lines
that we cut them apart by.

Let S be a surface. We draw a curve on S which (if possible)
does not split S into 2 pieces. If ever it transpires that we cannot
find such a curve, we stop.

A narrow strip of surface on either side of the curve will be
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topologically equivalent to a strip with its ends joined. Therefore
itis either a cylinder or a Mdbius band.

Now we apply surgery. If the strip is a cylinder, we remove it
and sew in two discs across the holes left. We mark each disc with
an arrow to remind us how to put the cylinder back. If the strip is
a Mobius band, we remove it and sew in one disc.

In the same way that we calculated the Euler characteristic of
the standard surfaces (but in reverse) we see that every surgery
increases the Euler characteristic; by 2 if we had a cylinder, by 1 if
we had a M6ibus strip. We now appeal to the

Unproved assertion A: the Euler characteristic of any sur-
face is at most 2.

Thus our sequence of surgeries must stop, after finitely many
stages. But it only stops if we can find no curve which does not
split the surface up.

Unproved assertion B: a surface which is disconnected by
every curve on it is topologically equivalent to a sphere.

So when our surgeries stop, we have a sphere.
Now we reverse the process. Three kinds of desurgery can
happen.

(i) We have two discs with arrows going round in opposite
directions, and sew in a cylinder. This is the same as sewing
on a handle (Figure 126).

(ii) We have one disc, and sew in a MGbius band.

(iii) We have two discs with arrows going the same way:

Figure 126
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sewing a cylinder back is the same as sewing on a Klein
bottle (Figure 127), which is equivalent to sewing on two
Mébius strips (compare Figure 83). So we can convert the
third kind of desurgery into two of the second kind.

S
S

Figure 127

If we started with an orientable surface S then only the first
kind of desurgery occurs. So we end up with a sphere plus handles:
which is a standard orientable surface. All we have done is pull §
apart and put it back the same way (but keeping track of how the
pieces fit) 80 S is topologically equivalent to the standard surface.

If we started with a non-orientable surface S, all three kinds
can occur. We can eliminate the third kind as above. Because we
are in the non-orientable case, at least one of the second kind
must occur. If now we have any of the first kind, we can take one
of the discs, and transport it around the Mébius strip. The result,
as with the hypothetical mittens in Chapter 10, is to reverse the
direction of the arrow on the disc. So now we have the third kind
of desurgery; which we again convert into two applications of the
second kind. So now we can desurger using only the second type
of desurgery: sewing in a Mbius strip. But doing this gives us a
standard non-orientable surface.

Apart from the two unproved assertions, we have shown that:
every surface is topologically equivalent to the standard orientable
surface of genus n > 0 or to the standard non-orientable surface of
genus n > 1. (We don’t need n = 0 in the second case, because
that’s just a sphere, which is orientable, and covered by the first
case withn = 0.,)

Assertions 4 and B were left unproved in order not to interrupt
the flow. Now, we must deal with them.
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The Proof of Assertion A

'We can define the Euler characteristic of a network N'to be
xN)=V—E,

because a network as such has no faces. (Only when it is drawn on

some surface will it be possible to define faces; in the above

definition we therefore neglect them.)

If N is a network, we can show that x(N) < 1, as follows:

If N has any circuits, we break one, throwing away an edge only.
This decreases E, and 80 increases x(N). We can repeat this until
no loops are left. A network without loops is called a free, and
looks like Figure 128.

Figure 128

‘When we have a tree, we can use collapses (as in Chapter 11):
we remove a vertex from the end of a ‘branch’, and also the edge
attached. The result leaves the Euler characteristic unchanged.
After enough collapses, we get down to a single point, for which
the Euler characteristic is 1—0 = 1. Going back to N first we
increased x(N), then we left it unchanged, and eventually we got 1.
Sox(N)< 1.

‘We also see that the Euler characteristic of any tree is exactly 1.

Now we look at our surface S, and prove that x(S) < 2. We
know that § is triangulable, so there exists a map on S (with
triangular faces). We define a new map, the dual map, as in Figure
129: we put a vertex in the middle of each triangle, and draw an
edge between any two vertices in adjacent triangles.



Figure 129

The vertices and edges of the dual map form a network. Inside
this network we can find some trees (for example, a single point).
From among these we take a maximal one: one that cannot be
made larger without ceasing to be a tree. We call this a maximal
dual tree. (An example is given by the heavy lines in Figure 130.)

Figure 130

A maximal dual tree must contain all the vertices of the dual
map. If not, we can connect up some new vertex by a path. This
path will hit the dual tree at some point P, and the point Q before
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it hits will not be in the tree. Adding Q and the edge PQ to the
tree still gives us a tree; but this contradicts maximality. So all the
vertices must be included already.

Suppose that M is a maximal dual tree, and let C be that part
of the original network comprising the original vertices, together
with the edges that do mor meet M. Thea there are bijections
between

(i) triangles on S and the vertices of M,

(i) edges on S and edges of M and C (because each edge
of S that is not in C crosses exactly one edge of M, by the
way we defined C),

(iii) vertices on S and vertices of C (by the way we defined
C: the vertices on S are the vertices of C).

‘This means that
x2(5) = x(M)+x(C).

Now M is a tree, 50 x(M) = 1. And C is connected so x(C) < 1.
Therefore

x(8) <2
asclaimed.

Proof of Assertion B

Let S be a surface, such that every closed curve on S disconnects
S. We wish to show that S is a sphere.
First we prove that x(S) = 2. Let M and C be as before. Since

x(S) = x(M)+x(C)

it follows that, if x(S) 2, then x(C) # 1.So Cisnota tree.
Therefore C contains a closed loop. This is a closed curve on S,
and by hypothesis disconnects S. But each piece into which S is
split by the curve in C must contain a dual vertex. These have to
be joined in M, so M must cut through the loop in C. But M and
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C were defined to be disjoint. This is a contradiction; so our
hypothesis that x(S) # 2 is wrong. So x(S) = 2.

Now it follows that x(C) = 1. So C is a tree. If you take a tree
and “fatten it up’ a little, as in Figure 131, the result is topo-
logically equivalent to a disc: all you need do is shrink the
branches down towards some given point.

Figure 131

Define two subsets of S as follows: a point of S lies in X if it is
nearer to M than to C. A point of S lies in Y if it is nearer to C
than to M.

Each of Xand Yis a ‘fattening’ of M or C, s0 is topologically a
disc. Further, X and Y meet along their edges. So S is topo-
logically equivalent to two discs sewn edge to edge . . . whichisa
sphere.

Map-Colouring on Surfaces

‘We can consider how many colours are needed to colour a map
on a surface of standard type.
For Euler characteristic » it can be shown (by essentially the
argument that showed 5 colours sufficient on a sphere) that
B +v(@9—24n)]
colours suffice, provided » < 1 (which is true except for the
sphere).
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For the torus, where » = 0, the formula gives 7. This is also a
necessary number of colours, as shown by Figure 132,

L. P ]

Figure 132

Recent research? has shown that the formula gives the exact
number of colours required in all cases except two. For the sphere,
it gives the answer 4, which may or may not be correct. For the
Klein bottle it gives 7, which is definitely wrong: only 6 are
peeded.

This compounds the curious status of the 4-colour problem:
only for the sphere, the simplest possible surface, do we ot know
the answer.*

¢ We do now. See Appendix, p. 300.



Chapter 13 Algebraic Topology

The Buler characteristic is a numerical invariant which, as we
saw, can be used to distinguish between topologically inequivalent
spaces. The search for other invariants has revealed a remarkable
connection between two branches of modern mathematics: topo-
logy and abstract algebra. There are innumerable algebraic in-
variants associated with topological spaces: most commonly we
associate a group with a space, in such a way that topologically
equivalent spaces have isomorphic groups.

The hope is that by amassing enough invariants, we might be
able to classify certain broad classes of topological spaces. Except
for surfaces (where the Euler characteristic and orientability
suffice) this has never been done, but mathematicians are closer
than ever before to a genuine understanding of the problems
involved.

Holes, Paths, and Loops
Suppose we wish to distinguish between a disc, and a disc witha
holeinit.

‘We might notice that in the disc, any closed path can be shrunk
until it reduces to a single point; but if there is a hole a closed
path round the hole cannot be shrunk to a point - the hole gets
in the way.

The ‘shrinkability’ of a closed curve is clearly a topological
property, 30 we have achieved our immediate aim of distinguish-
ing the two spaces. What I now want to do is develop the key idea:
that holes can be detected by looking at paths in the space, and
ways of deforming the paths.

Let’s put our terms on a better footing. A path in a topological
space is a line joining two points of the space. It doesn’t matter
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how wiggly it is, or even whether it crosses itself ; but there must be
1o breaks. We want the path to be continuous.

However, if the path does cross itself, we must specify which
way to go around it: the two paths of Figure 133 are to be con-
sidered different.

Figure 133

This is important: if we want to use paths to detect holes, the
way we go round the path affects the way the path wraps around
the hole. In Figure 134 one path can be ‘pulled away from"’ the
hole, and the other one can’t.

Figure 134

The easiest way to specify how to travel along a path is to
imagine a point moving along it. At time # this point will be in
pogition p(r). It starts at some time 7, and ends at some time #,.
Sinee the path has no breaks, this means that p specifies a con-
tinuous function whose domain is the set of real numbers x in the
interval ¢, < x < t,, and whose target is the given topological
space. Each such function defines a path, and each path defines
such a function.
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If one path ends where another begins, we can compose them by

travelling along the first and then along the second as in Figure
135

C

B q
Figure 135

We use p to travel from 4 to B; then reset our clock to the
starting time for g to travel from B to C. Let’s denote the resulting
path by

pP*q.

If p is defined on the interval £, < x < ¢, and ¢ on the interval
12 < x < 1y then p*q is defined on #p < x < 1, —12+15, because
of the way we reset the clock in the middle.

Composition * of paths defines an operation on the set of
paths: composing any two paths gives another, so the set is
closed under the operation. Further, * is associative (Figure 136).

A C

Figure 136

Going from A to B and then from B to C to D (i.e. p*(g*r))is
obviously the same as going from A to B to C and then C to D
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(@i.e. (p*q)*r)). (This is reminiscent of the reason why multipli-
cation of functions was associative. But notice that p*q is not the
same as pg: in fact, the ranges and domains don’t fit very well,
and pg cannot be defined.)

However, we cannot compose any two paths: their ends have to
fit. If we fix a base point A we can restrict attention to loops at A4,
that is, paths which start and finish at 4. There isnow no problem
about composing loops, because the second always starts where
the first one ends - at 4. So the set of loops at A is closed under
the operation *, and the associative law holds.

These are axioms (1), (2), and (3) for a group (see p. 100).
Already we have produced some kind of algebraic structure. In
fact axiom (4) holds as well; the trivial loop - stay at 4 and take
no time in doing it ~ composes with any other loop to yield that
loop.

The only thing that is missing is axiom (5), the existence of in-
verses. Now, what is an inverse? It is a way of undoing something.
‘To undo a loop, we should travel along it in the opposite direc-
tion.

Unfortunately, this doesn’t quite work. An inverse p=! to a
loop p should compose with p to give.the trivial loop. But it takes
no time at all to traverse the trivial loop: whereas to traverse
Pp*p! takes as least as long as traversing p.

We can’t get round this by changing our choice of the identity:
if p*x is to equal p, then it must take no time to go round x, in
order to leave long enough to go round p.

Nonetheless, we so nearly have a group that surely there is
some way out?

Homotopy

The ring Z of integers does not possess multiplicative inverses.
But if we chop it up into congruence classes to a prime modulus,
inverses miraculously appear.

Our present predicament is analogous: we haven’t got inverses
but we want them. Its solution is similar: chop the set of loops up
into some kind of classes, and operate on the bits.
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What we need is something like ‘congruence’ for loops —
although congruence in the sense of Euclidean geometry won’t
do. Our original purpose: using loops to find holes, gives a useful
clue. In discussing the hole in the disc we talked about ‘shrinking’
theloop.

Given two loops in a space S we shall say that they are homo-
topic if one can be deformed continuously into the other inside S.

This time we really do want deformations and not just con-
tinuous functions. There is no problem about embeddings
changing anything, because the loops are already embedded in §
and §'is what we are interested in.

In fact it is easier to illustrate homotopy for the more general
paths. The definition is the same: but of course homotopic paths
must have the same end-points. The two paths in Figare 137 are
homths. pic. (The deformation is shown by the sequence of dotted
paths.)

Figure 137

The pathsof Figure 138 are not homotopic, because the hole gets
in the way.

Instead of paths we consider homotopy classes of paths. Given
a path p we let [p] denote the set of all paths homotopic to p. This
is the homotopy class of p, and it behaves in a way analogous
with the congruence class of an integer.

If p=1 is the path p in reverse, then although p®*p—* is not equal
to the trivial loop, it is Aomotopic. As in Figure 139, we can shrink
p*p~? gradually back towards the base point, at the same time
going round it faster and faster. Eventually we get back to a path
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Figure 138

which stays at the base-point and takes no time in doing it. (For
clarity we have slightly separated p and p=1.)

OWQ} W,

o
Figure 139

Now we've almost finished. We define composition of homo-
topy classes by
[P)*lq] = [p*q]

(and check that this makes sense). And we find that the set of
homotopy classes of loops forms a group under the operation * of
composition.

This is known as the fundamental group of the space S, and
denoted by #(S). Its construction is due to Poincaré.

If S and T are topologically equivalent spaces, we know there is
a function f:S — T such that both f and its inverse g are con-
tinuous.

A continuous function turns paths in S into paths in T, The
definition of composition of paths is topological, and so is the
idea of homotopy: and f defines a function Fsuch that

F(p) =fP)]
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on the homotopy classes. The way F is defined means that
F(p¥la) = F(IpD*F(qD- ®

The inverse functiong: T — S similarly defines a function G, which
is the inverse function to F. So Fis a bijection, and (}) says that F
is an isomorphism.

Therefore the groups a(S) and »(T) are isomorphic. In this
sense, (S) is a topological invariant.,

You could extract from x(S) manerical invariants, such as the
order of a(S), but in so doing you would lose useful information.?

The Fandamental Group of the Circle

The fundamental group is not much use unless we can calculate
it. In general this is not an easy task, and together with its
generalizations is the subject of a considerable body of theory.

For some spaces: R, R?, a disc, a solid ball, . .., it is easy.
These spaces have no holes, and any loop can be shrunk to give
the ttivial loop, as in Figure 140.

Figure 140

Their fundamental group is therefore the trivial group with one
clement 7, such that I2 = I.

Using the ‘orange-peel trick’ of p. 170 we can work out x(S)
when S is the surface of a sphere. Take any loop p on S. Choose a
point not on p, and remove a small disc around this point, not
meeting p. The remainder of the sphere can be opened up to a
disc; inside this disc we can shrink p to a point. Folding the disc
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up again shows us how to shrink p to a point on S. So x(S) is tri-
vial, too.

The next simplest case is when S is a circle. Any loop in S winds
around S a certain number of times. This number is called the
winding number of the loop. The loops in Figure 141 (drawn

QOO

Figure 141

slightly separated for clarity) have winding numbers 1, 2, and 0
respectively. Reversing them gives winding numbers —1, —2,0
(with the convention that anticlockwise is the positive direction).

What we shall show is that the winding number determines the
homotopy class: two paths are homotopic if and only if they have
the same winding number.,

This is intuitively reasonable. It seems hard to change the
winding number just by deforming the loop. The trivial loop, of
course, has winding number 0; and the third loop above, which
also has winding number 0, can be shrunk back to a point.

To prove this, we introduce an extra space into the picture. It
will have the advantage that its homotopy properties are easy to
work out, and be sufficiently closely connected with the circle
that we can deduce the homotopy properties of the circle.

Imagine a line L arranged over the circle, like a spiral staircase,
with the point O of the line above our base point 4 in the circle.
Any loop in the circle S can be ‘lifted’ to a path in the line L:
imagine a point on L and a point on S. As the point on S moves
round a loop, the point on L stays immediately above it, moving
in a continuous fashion. For the loops of Figure 141 we get the
paths of Figure 142,

The lifted path need not end up at O, although it always must
end up directly above (or below) O on the spiral. The number of
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=E8

O D

Figure 142

levels up or down it ends up at is exactly equal to the winding
number. If you wanted, you could use this as a definition.

The crucial point now is that two paths in S are homotopic if
and only if the lifted paths are homotopic in L. If we have a
homotopy in L we can ‘project’ it down to give a homotopy in S.
Conversely, any homotopy in S can be lifted to a homotopy in L:
as we deform a path in S, we deform the corresponding path in L.

But in L homotopy properties are trivial, for L is a line, and we
know that x(L) is trivial. Two paths in L are homotopic if and
only if they have the same end-points. This is certainly necessary;
and it is sufficient because of the triviality of #(L).

All of the lifted paths in L start at O. They have the same end-
points if they end up the same number of levels above (or below)
0. This happens precisely when the corresponding loops in S have
the same winding number.

If we take a loop in S with winding number » and compose it
with a loop with winding number m, we get a loop which goes
first » times around, and then m times further. So it has winding
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number n+m. It follows that x(S) is isomorphic to the group Z of
integers under addition.

The Projective Plane

If we take S to be the projective plane, it turns out that x(S) is the
group with 2 elements

Ir

I{Ir

rir I.
The element r is the homotopy class of the path shown in Figure
143,

>

<
Flgure 143

(Reaﬂdnwaywethinkofdnmecuvephneuasqmthh

opposite points identified.)

The fact that 72 == I means that, although the path in Figure
143 cannot be shrunk to a point, the path obtained by going
round it twice can be shrunk.

‘We can see this geometrically (Figure 144): we take one copy of
the path and pull it across and over the top left-hand corner;
because of the identifications it comes back in the lower right-
ban2 corner in the reverse direction. Then we shrink the whole
lot back to the base point.

This curious fact is connected with the ‘soup-plate trick’.
Obtain a soup-plate, preferably one that is not a family heirloom,
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s

b

and hold it in front of you balanced on the tips of the fingers of
your right hand. Bring your elbow back and down, passing the
plate under your armpit. Keep twisting your arm the same way,
and raise your elbow until the plate returns to its original position.
Your arm is now twisted, and the elbow points upwards instead of
down.

But you don’t stop here. Continue to twist your arm the same
way, moving the plate over your head and bringing your elbow
around the front: and you will return to your starting position.

Halfway round, your arm was twisted. Going round again
ought to twist it even more. But it doesn’t: you end up in the
original position with an untwisted arm.

This is exactly what is happening in the projective plane: going
round once things get twisted; going round twice brings them
back to normal.

Figure 144



Chapter 14 Into Hyperspace

“People ask me, ‘' Can you show us
this fourth dimension?.” And I reply,
“Can you show me the first, second,
and third?"” ’— Anonymous

Often a mathematical generalization, at first pursued for its own
sake, later turns out to be of great importance in mathematicsasa
whole.

In Chapter 4 we found that the Euclidean plane can be thought
of as the set of all ordered pairs of real numbers, which we de-
noted by R2, In the same way, three-dimensional space can be
thought of as the set R? of all triples (x, y, z) of real numbers.
And of course, the line R is one-dimensional. We have

1-space = R = the set of real numbers x
2-space = R? = the set of pairs of real numbers (x, y)
3-space = R3 = the set of triples of real numbers (x, y, z)

Real space stops at this point. But reality is very disappointing.
Why not go on, putting

4-space = R* = the st of quadruples (x, y, 2, 4)
S5-space = R® = the set of quintuples (x, ¥, z, 4, v)

and in general
n-space = R® = theset of n-tuples (x,, . . . , x,)?

‘Why not, indeed? We are at liberty to make whatever definitions
we choose. But space does not consist of points alone. It has a
distance structure.

From Pythagoras it follows that the distance d between points
(x1, x2) and (»y, y,) is given by

d? = (x; =y +(xa—y12)?
and the corresponding formula in 3-space is
d? = (%, =y1)* +(x2=y:)* +(xs —y3)2.
In 1-space we can even write the formula in a similar form,
d* = (x1 -y
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If everything is working properly, we ought to be able to define

distance in 4-space by

d? = (x;—y1)2 +(x2—y2)* +(x3—y3P +(xa—Ya),
d now being the distance between (xy, X2, x3, x4) and (1, ¥2, ¥s,
Ya). And in n-space one would expect the obvious formula.

It is not a question of whether the formula is true. We don’t
know anything about four-dimensional space, so we have no
possible way to check the truth of the formula. We are settingup a
piece of abstract mathematics; we may use whatever formula we
wish. A more helpful attitude would be ‘That’s all very well, and
T agree that it’s the obvious formula to use, but can you do any-
thing with it that makes sense?’

For something to qualify as a “distance’ it should satisfy three
conditions:

(i) The distance between any two points is positive.

(ii) The distance between two points is the same in either
direction.

(iii) The distance from A to B should not be longer than
the distance from A to C plus the distance from C to B.

Condition (jii) says that any side of a triangle is shorter than the
other two put together, and corresponds roughly to the idea that
“a straight line gives the shortest distance between two points’.

‘We can verify these conditions for our formula.

Condition (i) holds, provided we take the positive square root
to get d. And we can take the square root, because the right-hand
side is a sum of squares, 0 is positive.

Condition (ii) says that if we change all the xs to ys and all the
¥s to xs, d should not change. But since (x; —y;)? = (31 —x1)?,
and so on, this is the case.

Condition (jii) leads to an important algebraic inequality. We'll
take the special case n = 2. From Figure 145, it boils down to
proving that

V(@ +b)+v/(+d?) = v/((a+e)*+(b+d)).
Squaring, this will be true provided
a2 +b2+ 2 +d*+24/(a*+6*N 2 +d?) = (a+c)+(b+d),

i.e. provided
24/(a*+b*Nc*+d?) = 2(ac+bd).



202 Concepts of Modern Mathematics

asc
d
bd
4
b
a
Figure 145
This, in turn, is true provided
(a*+b*Nc?+d?) = (ac+bd)?

which is the same as

(@ +b*)(c* +d*)—(ac+bdy* = 0.
But you can work out the left-hand side, and it turns out to be
equal to.
(ad—bc)>.

But squares are always positive. So condition (jii) is true, at least
in 2 dimensions.

Similar but messier calculations work for n dimensions. And
already our tentative idea has generated an important inequality.

This means that, at the very least, our definition of distance is a
sensible one. The geometers of the nineteenth century (who were
rather running out of theorems to prove in 3 or fewer dimensions)
began to investigate the properties of our abstract 4-space. To
their great delight, they found that the concept was not only
sensible, but very fruitful ; full of beautiful ideas and theorems.

Polytopes

In 3-space there are exactly 5 regular polyhedra: tetrahedron,
cube, octahedron, dodecahedron, icosahedron. The correspond-
ing object in 4-space is called a polytope. Its ‘faces’ are 3-
dimensional regular polyhedra, in the same way that the faces of a



Into Hyperspace 203

regular polyhedron are regular polygons; and the arrangement of
“faces’ must be the same at each vertex. To avoid confusion, we’ll
call the 3-dimensional ‘faces’ solids and leave the word *face’ for

the 2-dimensional faces of these solids.

The geometers (in particular Schlifli) found that there are
exactly six regular polytopes in 4 dimensions:
mlldslfm Iate: |v¢mce: |tw¢afsoll¢r Imme

5 10 10 5 tetrahedron simplex

8 24 32 16 cube hypercube

16 32 A4 8 tetrahedron 16-cell
4 96 % | A4 octahedron 24-cell
120 720 | 1200 | 600 dodecahedron | 120-cell
600 | 1200 | 720 | 120 tetrahedron 600-cell

(We will return, later, to the pattern of the numbers.)

However, in 5-space, 6-space, or higher, there are only three
regular polytopes: analogous to the tetrahedron, cube, and
octahedron.

So the number of regular figures in 2-, 3-, 4-, 5-, . . .-space is
©,5,6,3,3,3,....

We can’t draw any of the polytopes on paper. But no more can
we draw 3-dimensional figures on paper. We use a convention to
represent 3 dimensions on the two of the paper, the convention
we use being determined by the anatomical structure of our eyes.
‘We can represent 4-dimensional figures, too. But without practice
the pictures will be hard to ‘read’ - in the same way that engineer-
ing drawings are hard for the non-engineer to cope with.

Four-Dimensional Pictures

One way to mpmt&dmmﬂﬁg\mlsbyprojecﬂon This
is the way an artist draws a 3-dimensional scene on a
sional canvas. The scene is ‘squashed flat’ either radially or per-
pendicularly, as in Figure 146.

An analogous procedure enables us to project 4-dimensional
figures into 3-space. An additional complication arises in printing:



Figure 146

the 3-dimensional projection must itself be projected into 2-space!
‘Two projections of the hypercube are shown in Figure 147,

Figure 147

In interpreting these pictures you have to take account of the
effects of perspective. The small cube on the inside of the left-hand
figure is, in reality, the same size as the outside one. But without
much trouble you can see that the hypercube is made up of eight
cubes (in the left-hand picture, one large, one small, and six dis-
torted into the shape of a truncated pyramid). Each cube is face
to face with six others, and there are four cubes around each
vertex.

There exist computer programs which display on a screen pro-
Jjections of 4-dimensional figures. The operator can control the
direction in which the projection occurs by ‘rotating’ the figure.
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Itissaid that after some experience the operator can begin to guess
how the projections will look as he rotates the figure - he begins to
think in 4 dimensions. Topologists who work with higher dimen-
sional spaces also tend to acquire this faculty.

There is another way to represent 4-dimensional objects, which
seems to be easier to visualize: we draw a series of cross-sections.
This is analogous to the way a map shows hills and valleys by
drawing contours: an imaginary horizontal plane is allowed to
slice the surface of the countryside, and the curves in which it cuts
the surface are drawn for different positions of the plane, as in
Figure 148.

Figure 148

By cutting out pieces of card in the shape of the contours and
stacking them on top of each other at the correct heights, you can
reconstruct the shape of the surface.

A race of creatures living in 2-space could use these cross-
sections to visualize 3-dimensional objects. And an inhabitant of
1-space could obtain an idea of the shape of a plane figure by
taking a series of linear cross-sections.

In each case the sections drop a dimension. So the cross-sections
of a 4-dimensional figure will be 3-dimensional.

By generalizing the algebraic formulation of taking cross-
sections in 3-space, we can define exactly what we mean by a cross-
section of an object in R4, or R%,. ... We can use analogies to
guess what these sections should look like in certain cases, and
then check that we are right by algebra. We won’t bother with the
algebra.
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Sections of a sphere form circles, growing from a point to a
maximum and then contracting again. So sections of a hypersphere
(the 4-dimensional analogue) should be spheres, growing from a
point, and then contracting, as in Figure 149,

~0QH 00~

Figure 149

Sections of a cube are always square, 8o sections of a hypercube
should be cubes (Figure 150).

LOTtb

Stacking the Sections

Ourmainpmblem,livinsins-space,istosmktbesectiom
mentally. Again an analogy with hypothetical inhabitants of the
plane helps. How could flatlanders stack 2-dimensional sections?

Theycouldgettlwmmthemectseqwebymgmmgthat
the plane doing the slicing moves uniformly in time. At a given
time ¢ the cross-section is a 2-dimensional object. If they could
make a motion picture, whose successive frames corresponded to
successive instants of time, they could use this to stack the pic-
tures. They would think of a sphere as a circle, growing from a
point, then shrinking.

In the same way, we can stack the 3-dimensional sections of a
Ldimmsionalob]ectinnme,mbyproduansaldmnoml
moving picture. A hypersphere would look like a bubble, growing
and then shrinking. A hypercube would be a cube which suddenly

Figure 150
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appeared, stayed exactly the same for a period of time, and then
suddenly disappeared. If you saw a sphere suddenly appearing,
staying the same, and then suddenly disappearing, you would
know that you were watching a hypercylinder with spherical
cross-section.

This is better, but not good enough. As it stands, we have to
watch the movie in a fixed sequence. We are like a blind man who
isallowed to feel objects from top to bottom in a single movement.
We want to be able to run our hands up and down, exploring
closely any particularly puzzling (or interesting!) feature.

In short, we require a time-machine — or at the very least a
reversible film-projector with variable speed.

The machine will have a foot-pedal to control time, and some
sort of screen for displaying 3-dimensional pictures. Fortunately
an imaginary machine will do: use your foot as a pedal and rhink
of the pictures.

By varying the pressure of your foot you will be able to move
around in time. As a first exercise in pedal-control, we shall undo
a knot (in 4-space) without untying the ends. For simplicity a
simple overhand knot will be used, but any other knot would do.
Frame A in Figure 151 shows such a knot; it lives in 3-space at
times = 0.

A B

Yy ||

Figure 151
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Grasp the string firmly at a point near the crossing X. Depress
your foot, and move slightly forward in time, thereby dragging a
small loop of string with you in the time direction, though leaving
most of the knot in its original spatio-temporal state (shown
dotted) as in frame B. Now push the loop downwards, below where
the other bit of the string used to be, as in frame C. Finally, return
to time ¢ = 0, bringing the loop with you. The result (frame D) is
to untie the knot.

As a second exercise, you might try to embed a Klein bottle in
4-space without self-intersections. Start with Figure 81 at time
t = 0. Take hold of one bit of the ‘tube’ near the intersection, and
move it slightly in time.

Another thing you can visualize is the linking of a circle and a
sphere. First, let’s set up an analogy. Consider two linked circles
in 3-space; for convenience make one of them rectangular
(Figure 152). Put in a time axis as shown.

A 4

<1

r 3

Figure 152

The link now looks like this: at time ¢ = 0 a point starts in the
centre of the rounded circle. It moves forwards in time, sideways
in space, backwards in time to before the circle, sideways in space
to a point immediately before the centre of the circle, and finally
forwards in time to join up the loop.

For a link of a sphere and circle in 4-space, we do much the
same. Imagine a sphere at time ¢ = 0. A point starts in the centre of
the sphere. It moves forwards in time (not cutting the sphere,
because that disappears as soon as it starts to move), loops around
the sphere in time and space to a point immediately backwards
in time from the centre of the sphere, and finally moves forwards
in time to close the circle.
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Instead of links, you can try to visualize knots. It is possible to
knot a sphere in 4-space, in the same way that a circle can be
knotted in 3-space. Topologists have expended much effort on the
problem of whether an m-sphere can be knotted in n-space. At
the time of writing the first unsolved case is the 10-sphere in 17-
space,

Astronauts in 24-Space

Imagine a pendulum swinging through a small angle. At any given
time ¢ it has position p and velocity g. If we plot a graph of p
against g (with time measured in suitable units) we get a circle,
and the point (p, ¢) moves around the circle with uniform speed
as the pendulum swings (Figure 153). Thus, starting at A we have

q

q
-

—_—3p C
Figure 153

P=0,g>0;at Bwehaveg = Oandp > 0,at Cwe havep =0
but now ¢ < 0, and at D we have ¢ = 0 and p < 0, which agrees
with how a pendulum swings (Figure 154).

The diagram of p against g isknown as a phase diagram and the
(p; 9)-plane is called phase space. In this case it has 2 dimensions
because the state of the pendulum is determined by two numbers:
one position coordinate and its velocity.

Any dynamical system has a corresponding phase space, with
one dimension for each position variable and one for each velocity
variable.
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A B C D

—> -«
p=0 p>0  p=0 p<0
q>0 qco q<0 q=0
Figure 154

The system of sun, moon, and earth, acting by gravitational
attraction, forms a dynamical system. There are three position
variables for each body, and three velocity variables (because in
3-space we need three coordinates to fix positions or velocities),
making a total of 18 dimensions for the phase space. The state of
the whole system at any time is represented by a single point in
phase space; as time varies this point describes a path, which
completely specifies the motion of the whole system.

To compute the orbit of a spacecraft moving in the system, we
have to throw in 6 more dimensions of phase space (for the craft),
and the problem becomes one of 24-dimensional geometry! Not
only is this a way of describing the problem. If developed system-
atically it gives a deep and powerful mathematical method:
geometrical dynamics.

For a given dynamical system, there will be many ways to set
the motion going. For the spaceship, we could choose various
initial positions or velocities. To each initial state will correspond
a point in phase space. As the system develops this point describes
a path, so we get a family of paths, one for each initial position. If
you imagine phase space to be filled with a fluid, such that each
particle of fluid corresponds to a state of the system, then the
fluid will flow along the paths. For the pendulum, the flow-lines
will be concentric circles: the stationary point in the centre
represents a pendulum hanging vertically at rest (Figure 155).

Coincidentally it follows from Newton’s law of conservation
of energy, that this imaginary fluid behaves exactly like a genuine
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Figure 155

fluid; and further is incompressible. As a result, the methods of
fluid dynamics can be applied to the general theory of dynamical
systems. Without using multidimensional geometry, this appli-
cation could never have been made.

Euler’s Formula Generalized Further

Euler’s formula gave a relation between the numbers of faces,
edges, and vertices of a map in the plane. We have generalized
this to other surfaces; now we ask whether there exists a generali-
zation to spaces of higher dimension.

A ‘map’ in n-dimensional space will have n-dimensional regions,
with (n—1)-dimensional faces; these in turn have (n—2)-dimen-
sional faces, and so on down to the vertices, which are 0-dimen-
sional. We let F, be the number of n-dimensional ‘faces’ of the
map. So for a polytope in 4-space, F, is the number of vertices, F,
the number of edges, F; the number of faces, Fy the number of
solids, and F;, the number of 4-dimensional regions — which for a

regular polytopeis 1.
The formula in two dimensions was
V—E+F=1
or
Fo—Fi+F =1

Bearing in mind how this formula was proved, by ‘collapses’,
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where changes in adjacent dimensions cancelled out, we are led to
consider the expression
Fo—F,+F,—F;+F,
in 4-space. We can try this out on the regular polytopes, remem-
bering that for these F, = 1. Using the table on page 203 we find
that the expression takes the values
5—10+10—5+41 =1
16—-32+24—-8+1 =1
8—24+32—-16+1=1
24—96+96—24+1 =1
600—1200+720—120+1 =1
120—720+1200—600+1 =1,
which would be remarkable if it were a coincidence.
For a 3-dimensional map, the analogous expression would be
Fo—F,+F,—F;.
We try this out in something less regular (Figure 156).

Figure 156

Wehave Fp = 14,F, =22, F, =11, F, = 2,and
14-22411-2 =1
which again suggests something more than mere coincidence.
For a map in n-dimensional space, we expect the equation
Fo—Fl+F3— “ee iF- - l.
‘We can prove that this is the case without much difficuity: our
collapsing technique is equal to the task. We can collapse simul-
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taneously a vertex and an edge, or an edge and a face, or a face and
asolid, ... and in general an m-face and an (m+-1)-face (Figure

o
o - CU
& &

Each such collapse leaves the left-hand side of the equation
unchanged; and eventually we are reduced to a single point, for
which the value is 1. (To get the proof working properly it is neces-
sary to do the collapses in the right order; but we have got the
main idea.)

So in this case the method of proof, as well as the theorem, can
be generalized.

The n-dimensional version of Euler’s formula was first proved by
Poincaré, and is therefore known as the Euler-Poincaré formula.

More Algebraic Topology

The idea of homotopy, and the fundamental group of Chapter 13,
can be generalized to higher dimensions. Instead of paths ob-
tained from a line segment, we use an n-dimensional hypercube.
Instead of joining end to end we join face to face as in Figure 158.
To obtain a group we look at hypercubes whose boundary is
squashed up to a single point.
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Figure 158

The notion of homotopy generalizes suitably, and we end up
with a group, whose elements are homotopy classes of n-dimen-
sional *paths’. This is the n-th homotopy group =,(S) of the space
S. The fundamental group =(S) is now x,(S), the first of a whole
series of algebraic invariants.

The higher homotopy groups can detect differences which =,
misses. If we remove a spherical hole from a solid ball, to get a
space S like the thickened-up peel of an orange, then x,(S) is
trivial. Any loop can be slid over the hole and shrunk to a point.
But if we put in a square, surrounding the hole, whose boundary
is squashed up to a point (rather like putting a paper bag around
the hole) then this square cannot be shrunk to a point inside S.
So =2(S) is not trivial, and detects a hole which is missed by =,.

If we know all the homotopy groups =,(S), x2(S), ®3(S), ...,
it might be hoped that we would know what S was, up to topo-
logical equivalence. Unfortunately this is not the case. However,
Poincaré conjectured that a special case might be true: if S has the
same sequence of xs as an n-sphere, then S is an nsphere. For
n = 2 this is essentially our assertion B of Chapter 12. Forn > §
it is also known to be true, and was proved by Smale.! But for
n = 3 or 4, nobody knows. *

Thus the topology of higher dimensions can be easier than that
of lower dimensions, which is a surprise. Indeed, it is part of
topological folklore that the worst dimension is 4. Just what is so
special about 4-space is an unsolved mystery.

*The Poincaré conj in four dimensions was proved by Michael
Freedman in 1982. The three-di ional i ins open. See lan
Stewart, The Problems of Math ics, Oxford University Press, 1992.

[1995 note.]



Chapter 15 Linear Algebra

A Problem

Early on in school algebra we are taught how to solve ‘simul-
taneous equations’ such as
x+2y =6
3x—y=4 m
by the following method (or a variant thereof): multiply the first
equation by 3 to get
3x+6y =18

and subtract the second equation, which gives
Ty =14
whence y = 2. Substitute this value in the first equation, which
gives
x+4=6
and solve this for x, with the result x = 2.
Suppose instead we had started with the equations
x+2y =6
3x+6y =4, @
The method tells us to multiply the first by 3, giving
3x+6y =18
and subtract the second, which yields
0=14.
‘We now attempt to solve this for y, and fail dismally. At school
we were protected against such an event by a careful choice of
questions. We were also protected from a related phenomenon,
exemplified by these equations:
x+2y =6
3x+6y =18 @
where the standard procedure leads to the equation
0=0
‘We could just shake our heads, declare equations like (2) and
(3) silly, and ignore the matter. But are we certain that we can
always detect when something silly is going to occur?
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With the particular equations given, an explanation of the
behaviour is not hard to find. In equations (2) the two parts
contradict each other, and there are no solutions. In (3) the
second equation says the same as the first, so really all we haveisa
that there are no solutions to (3): on the contrary there are many.
Forexample x=2,y=2;x=4,y=1;x=6,y=0;x=1/2,
» = 11/4. On the other hand, we do not have absolute freedom:
x =1, y =1 is not a solution. The full set of solutions can be
found as follows: take any value for x, say x = a. For this choice

of a we must take y -?.‘lhua,mdonlythae,ﬁve solutions.

Thus there may be
a single solution,
no solutions,
depending on the system of equations. In fact these are the only
possibilities: one cannot find a system of simultaneous equations
with exactly 2 real solutions, or exactly 3, or 4, or any finite
number other than 0 and 1. (I won’t prove this here, but it will be
clear from the subsequent discussion that it is true.)
The same kind of behaviour occurs with more variables, and
is far harder to detect. Faced with the equations
X+4y—2z43t =9
2x—y—z—t =4
Sx+Ty+z—2 =17
3x—2y—8z+5t =21
one might be forgiven for not noticing immediately that twice the
first equation plus three times the second minus the third gives
3x—2y—8z+5t =23
contradicting the fourth equation. If we change 21 to 23 in the
original system we get essentially 3 equations in 4 unknowns,
which turn out to have infinitely many solutions.
It is not even true that if we have more unknowns than equa-
tions we can find solutions: the system
x+y+ztt=1

has 1o soluti 2x+2y+2z+2t =0



Linear Algebra 217

Simultaneous equations, then, are not the tame things we are
encouraged to believe them to be. Their behaviour is wild and (at
first sight) unpredictable. If only it were true that all the simul-
taneous equations one actually encountered gave a single solution
then we would be able to ignore the difficulties. Unfortunately,
this is not so. Happily there are patterns concealed in the equa-
tions which allow us to resolve most of the problems.

A Geometric View

The conventional technique of plotting graphs of equations gives
some explanation of what makes (1), (2), and (3) so different. In
equations (1) the two parts correspond to lines, as shown in Figure
159: the unique solution is where the lines cross.

Figure 159

In equations (2) the lines are paralle]l (Figure 160) and never
cross,

I
6

Figure 160
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In equations (3) the lines coincide: thus all points on them cor-
respond to solutions. (See Figure 161.)

Figure 161

Clearly these are the only possibilities for two lines, which
explains why we must have either 0, 1 or infinitely many solutions.

There is another way of looking at the equations geometrically
which is more useful for a study of the general problem. What we
do is this: we set up fwo sets of coordinates (x, y) and (X, Y). For
each point (x, y) on the first graph we plot the point (X, Y) such
that

x+2y=X
x—y=Y.
Our original problem (1) now asks for us to find the point (x, y)

which yields (X, Y) = (6, 4).

What happens? Let’s cakculate (X, Y)for a few choices of (x, y).

(6]

©,0)
()}
(o) 2)
1,0
()]
1,2
20
@1
22

@, r)

©,0
-1
@, -2)
1,3
32
G 1)
2,6
(4, s)
64
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These results are illustrated in Figure 162,

p

Figure 162

Clearly the transformation of (x, y) into (X, Y) turns squares in
the (x, y)-plane into parallelograms in the (X, Y)-plane.

Our original equation is solved by looking at the last entry in
the table: x = 2, y = 2 gives X = 6, Y = 4. This is fortuitous.
But much more is clear from the picture. Consider any point (a, f)
on the (X, Y)-plane. Obviously some point of the (x, y)-plane will
end up at (a, ) because all we've done is stretch the plane a bit
and rotate it. The parallelogram which contains (a, f) comes from
some square: and some point in this square actually ends up at
(a, ). For instance, take (a, ) = (44, 3) which lies in the middle
of one of the parallelograms shown. The middle point of the
corresponding square is (13, 13). And sure enough, the unique
solution of

x+2y = 43
x—y=3
isx=1,y=13

Further, it is clear that this solution must be unique, because
the way squares change to parallelograms will not allow two
distinct points in the (x, y)-plane to end up in the same place. The
transformation does not introduce folds.
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If however we plot what happens for equations (2) (and, as it
happens, (3)), we must look at

x+2y =X

3x+6y =Y.
It is not hard to see that the only values of (X, Y) which arise lie
on a line: pamely the line Y = 3X (Figure 163),

>

/

Figure 163

The relevant transformation squashes the whole (x, y)-plane up
into a single line. In équation (2) we have to solve
X=6Y=4
But (6, 4) does not lie on the line. So no solution is possible: no
(x, y) can end up off the line. On the other hand, for equations (3)
we want to solve
X=6Y=18
and now (6, 18) is on the line: furthermore the squashing gives
infinitely many (x, y) which end up at (6, 18).
Further, all the possible values of (x,y) form a line in the
(x, y)-plane, given by
X 4+2y =6,

Thus the different phenomena which occur depend upon the
geometric properties of the transformation 7'such that

T(x, y) = (X, Y) = (x+2y, 3x—))
and the transformation S such that

S(x, y) = (X, Y) = (x+2y, 3x+6y).
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In order to study the general equation
ax+by =X
ex+dy =Y
we should look at the transformation
U(x, y) = (ax+by, cx+dy).
For equations in 3 unknowns
ax+by+ez=X
dx+ey+fz=Y
gxt+hyt+kz=2
we want the transformation
V(x y, 2) = (ax+by+cz, dxt+ey+fz, gx+hy+kz).
These are known as linear transformations: their study is called
linear algebra.

A Hint of a Pattern

We can reformulate equations (1) set-theoretically by using the
linear transformation Tabove. They become this: is the point (6, 4)
an element of the range of T? Recall that the range of T is the set
of values T(x, y) which T takes: then (6, 4) is in it if and only if
there exist x and y such that (6, 4) = T(x,y) = (x+2y, 3x—y);
which is the same as equations (1).

The same goes for the other two equations: they ask whether
(6, 4) or (6, 18) are in the range of the linear transformation S.

From the way that T takes squares to parallelograms it is
geometrically obvious that the range of T is the whole plane. As
we found, the range of S is a single line.

If we wish to study general simultaneous equations, we should
therefore try to find out about the ranges of linear transforma-
tions. So far we have found planes and lines. Are these all?

Not quite. The trivial simuitaneous equation

Ox+0y =X

Ox+0y =Y
corresponds to the linear transformation F with F(x, y) = (0, 0).
The range of F is a single point, {(0, 0)}. (The curly brackets are
just me being pedantic about set theory: the range is a set.)

However, this exhausts the possibilities for 2 equations in 2
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unknowns. The range is either a plane, a line, or a pomnt. Of
course if it is a plane it must be the whole of R2.

When the range is a plane, solutions always exist and are unique.
When the range is a line, solutions may or may not exist; they
exist exactly for (X; Y¥) on this line; and for a fixed (X, Y) the
possible solutions themselves form a line. When the range is a
point, solutions exist only for (X, ¥) = (0, 0) and then we have a
whole plane of solutions: namely anything in R,

Let us introduce the term “solution space’ for the set of solu-
tions, when such exist. Then we have the following possibilities:
range | solution space

plane | point

line | line

point | plane
For 3 equations in 3 unknowns we would expect the ranges and
solution spaces to be either points, lines, planes, or ‘solids’ (i.c. the
whole of R®). This is indeed the case. Furthermore we have:

range | solution space

solid | point

plane | line

line plane

point | solid
In other words, the smaller the range the bigger the solution
space: but on the other hand the smaller the range the less chance
that solutions exist at all.
The same sort of thing happens in general. If we look at R" it
can be proved that the dimension of the range plus the dimension
of the solution space is n. Thus a linear transformation on R’
with range of dimension 3 would have a 4-dimensional solution
space.
Of course I have not yet defined dimension. This is where the
subject of linear algebra really starts, but the details are best
found in a proper textbook.! However, it should be clear that the
apparent wildness of simultaneous equations can be organized
into a clear pattern of behaviour.
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Matrices

There is a useful notation for linear transformations, invented by
Cayley. If T(x, y) = (X, Y)where
ax+by =X @
extdy =Y
we pick out the coefficients and write them fn a square array, thus:

a b)

c dj.
Such an expression is called a matrix: the matrix of T. If we know
this matrix then we know T, provided we know which variables

x,¥, X, Y weare using. We can bring them into the picture too by
introducing column vectors

0 @

and write (4) compactly as

(Wi ®

where by definition the ‘product’ on the left is the column vector

(nx+by)

ex+dy,

and two column vectors are equal if and only if their entries are
equal.

This notation can easily be extended to 3 or more unknowns.
The general system of 3 equations in 3 unknowns takes the form

206

Ohenwehavetodealwithsemaluamformaﬁomomaﬂet
another. We might have yet more variables X and Y and a trans-
formation U such that U(X, Y) = (X, Y) where

AX+BY =X
CX+DY=Y ©®
or, in matrix notation,



224 Concepts of Modern Mathematics

(€ 2()- ) @
We have already defined a product of transformetions, which

gives
UT(x,y) = UX, Y) = (X, Y).
Now UT, it turns out, can also be represented by a matrix. From
(6) and (4) we get
X = AX+BY
= A(ax-+by)+B(cx+dy)
= (Aa+Bc)x+(Ab+Bd)y,
Y =CX+DY
= C(ax+by)+D(ex+dy)
= (Ca+Dc)x+(Cb+Dd)y.

Picking out the coefficients we could write
(Aa+8c Ab+M)(:)_(X)
Ca+Dc Cb+Dd, Y
which gives the matrix of UT as
(Aa+Bc Ab+

Ca+Dc Cb+Dd).

On the other hand, we could work purely formally to obtain from
(5)and (7) the equation

(e 2 20)-6)
which suggests that we might get a nice kind of algebra if we de-
fine a product for matrices by

A B\[fa b ==(Aa+Bt: Ab+
C DJ\¢ d Ca+Dc Cb+Dd].
For example, in Chapter 2 we had transformations G and H

where G(x,y) =(x, —y) and H(x,)) =(, —x). f (X, Y)=
H(x, y) then we have

X=y =0x+1ly
Y = —x=(—-1)x+0.y
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80 the matrix of His

0 l)
(1 o).
HG(X, Y) = (X, Y) then
X=X =1X+0.Y
Y=-Y=0X+(-1).Y
and the matrix of G is
6 =)
0o -1/.

By the formula the matrix of GH should be
(l 0)( 0 l)
0 —1)\-1 0

(l.0+0.(-l) 11400 )

0,

00+(—1X—1) 0.1+(—1).
which simplifies to

0 1)

(1 o).

Now we found that GH(x, y) = (3, x), so that

X =0x+1.y
Y =1x+0.y
which checks,

In fact we do get a nice kind of algebra by making this defini-
tion: one which allows us to calculate with linear transformations.
Tdon’t want to go into'details because there is already an excellent
treatment by Sawyer.?

However, let me do one more calculation which shows how the
use of matrices can give rise to results in trigonometry. In Chapter
2 I gave a formula for the transformation ‘rotate through angle
6. In matrix form it is

(cosa —sin
sin@ cos6

Thus the product of a rotation through 0 and a rotation through
¢ has matrix
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(oos# -ain¢)(co30 -sinﬂ)
sing cos/\sind cos,
outas
(cos*oosa-—sinnino —eousino—sinacou)

sin ¢ cos §+cosgsin@ —sin ¢ sin 6+-cos cosf).
But of course it should represent a rotation through ($+6), with

matrix
(008(¢+9) —sin (¢+0))
sin ($+6)  cos(¢+0)/.
cos(¢+8) = cos¢ cos §—sin ¢ sin §
sin ($+6) = sin ¢ cos §-+-cos¢ sin
which are the ‘addition formulae’ of trigonometry.

An Abstract Formuiation

Nowadays the study of linear transformations is a part of abstract
algebra. This arises from attempts to avoid using coordinates in
the theory.

Given two points (p, ¢) and (r, s) of R? we can define their sum

tobe
@, 9)+(r, 8) = (p+q,r+s).

If we have a real number a we can also define a product

a(p, q) = (ap, ag).
By means of these operations we can characterize linear transfor-
mations: they are exactly those functions T:R? —» R? such that
for all p, g, r, sand @ we have

T«p’ q)"’(’n ')) = T(P’ q)+T(’t 3)

T(o(p, 9)) = aT(P, 9)-
(You can check this if you wish.) The first equation is very similar
to that obeyed by an isomorphism in the sease of group theory,
which suggests that an abstract approach along group-theoretic
lines might be illuminating. By seeing what properties hold for
addition and multiplication by real numbers in R2, and analogous
operations in R® R4, RS, . . . , mathematicians evolved the follow-
ing formulation.
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A vector space over R is a set ¥V with two operations, called
addition and scalar multiplication. If u and v are elements of ¥ and
a is a real number then the results of these operations are denoted

by

u+to au
respectively: u--0 and au are elements of V.
The following axioms must hold:

(1) ¥V is a commutative group under addition, with identity
element 0.

(2) a0 = OforallaeR.

(3)0v = Oforallve V.

4 1o =vforallve V.

(5) (@+Bw = av+foforalla, feR,ve V.

(6) a(v+w) = av+awforallaeR,v,we V.

(7) aBo = a(Bv)foralle, BeR,0€ V.

There are many examples of vector spaces. The standard ones
areR, R%, R3, . . . but these are not the only ones. The polynomial
ring R[x] in one indeterminate is a vector space: so are R[x, ),
Rix, y,2], .... These have infinite dimension. Vector spaces
arise In the solution of differential equations, in certain parts of
group theory, and in modern formulations of the calculus.

A linear transformation is now defined as a function T: V -~ W
where Vand W are arbitrary vector spaces, with the properties -

T(u+v) = Tw)+T(v)
T(au) = aT(W)
forallu,ve V,aeR.

In this abstract formulation one can prove all the desired
theorems about linear transformations. Because no particular
choice of coordinates is made, the proofs are very clean and
direct.

However, to perform calculations in particular cases one uses
matrix notation.

A proper understanding of linear algebra requires a synthesis
of three points of view:

(i) the underlying geometrical motivation,
(ii) the abstract algebraic formulation,
(iiii) the matrix-theoretic technique.
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This makes matters hard for the student, to begin with; which is
probably why most textbooks concentrate on one of the three
viewpoints. But in the long run this bias will cause more problems
than it solves: the sight of a student struggling with enormous
matrices when a little geometrical insight would solve the whole
problem in two lines is not an inspiring one.



Chapter 16 Real Analysis

“There is in mathematics hardly a
single infinite series of which the sum
is determined in a rigorous way ' -
N. H. Abel, in a letter of 1826

The three cornerstones of ‘modern mathematics are algebra,
topology, and analysis. (Mathematical logic is more like the
mortar which holds the bricks together.) I have treated the first two
at some length; s0 it is only fair to say something about the third.

It is an unfortunate fact of life that analysis cannot be discussed
to any great depth without introducing many technical concepts.
A naive approach to analysis runs into insurmountable obstacles,
as any history of mathematics will demonstrate,

Analysis might be described as the study of infinite processes,
such as infinite series, limits, differentiation, and integration. It is
the spectre of the infinite looming above us which causes the
difficulties.

Infinite Addition

An infinite series is an expression such as
1+3+3+4+....

Its essenceis the ‘. . .,whwhseenntoukustoeonﬁnueaddmg
terms infinitely often. It is well to view such an expression with
scepticism, for it appears to be asking us to carry out an impossible
process: there is no man alive, no computer, however fast, that
can do infinitely many additions in a finite time, One is reminded
of paradoxical questions about light switches that are switched on
after one second, off half a second later, on after a quarter of a
second, off after an eighth, . . . ; after two seconds, is the switch
onoroff?

Thus on the face of it we have no guarantee that the expression
(1) means anything at all - an observation which escaped the
attention of almost everybody who worked on the subject in the
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eighteenth century. It then seemed that any kind of combination
of mathematical symbols was mathematically meanmgful a
naive notion of which mathematicians were disabused, painfully,
as time weat on.

However, if (1) does mean anything, then the best guess as to
what it might mean is surely the number 2. For we have

1 3
4 =2

-
te
&-'i-o-

Nln— ~

15

1+-+ s
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wt—

111 1 1
thatetgt a2

If we think that the sum should be 2, then the error we commit by
stopping after n+1 terms is 1/2", As n gets larger 2* gets very much
larger, and 1/2”" becomes rapidly smaller. In fact, by taking n large
enough, we can make 1/2" as sma]l as we please.

In the cighteenth century matters would have been phrased
thus: in the expression for the sum of n+1 terms put n = oo,
Then the left-hand side is the sum of 0 +1 terms, but ©+1 = ®©
80 this is the series (1). The right-hand side, on the other hand, is

1 1

‘This proves that the sum must be 2.

Actually it does nothing of the kind, for at least three reasons.
Firstly, we must assume that (1) has a meaning. Secondly, we must
assume that infinite sums can be subjected to algebraic operations
as if they were finite sums. Thirdly, the use of co as a symbol for
“infinity’ assumes that co behaves like a number: is this assump-
tion justifiable?
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A blind mampulation of infinite series leads to all sorts of para-

doxes, several of them quite charming, all of them mathematically
disastrous.

Thus let
S=1-14+1-1+1-1+....
Then
S=>1-D+1-D+1-D+...
=0+4+0+0+...
=0,
Equally,
S=1-1-1)-1-1)—-(1-1)—...
=1—(0+0+0+...)
=1-0
=1,
Or again,

1-S=1—-(1-141-14+1-1+..)
=1—14+1-141-1+...
=S
and we can solve for S, obtaining S = 1/2.

One hopeful spirit went as far as to suggest that the equality of
0 and 1 (expressed via ) was symbolic of creation from nothing.
Not only does this justify the uncritical manipulation of infinite
processes; it also gives a mathematical proof of the existence of
God!

The early days of analysis were bedevilled by a feeling that some-
how all three values for S are ‘correct’. Mathematics had not yet
learnt to cut its losses. It was gradually realized that infinite
processes are not of themselves meaningful: they must be given a
meaning. Once this has been done, restrictions may be imposed on
the expressions which occur in the processes. Further, one can no
longer assume that the usual laws are obeyed, though with luck
something may be salvaged.

What is a Limit?

Let’s take a closer look at that troublesome series S. The sums to
1,2,3,4,...termsare
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1 =1

1-1 =0

1-1+1 =1

1-1+1-1 =0

1-1+1-141=1
which take alternately the values O and 1. As n gets larger and
larger these do not settle down to some kind of ‘limit’; they just
hop happily from 0 to 1 and back again.

If we think the sum is 1 we commit an error of 1 at all even
terms; if O then we are in error by 1 at all odd terms. In fact the
best bet is 1/2, because this has the virtue of minimizing the error
at all stages!

A general series will look like

aytaz;+as+...

where the as are real numbers. The ‘approximate’ sums are

by =a

b; =a,+a,

bs = a,+a,+as

by = ay+az+as+a,
If the values of b, settle down to some ‘limit’ as n gets very large,
we could define the value of the series to be this limit. What do we
mean by ‘limit’?

A first hope is to look at the error we commit in stopping after n
terms: if a limit exists this error should become very small. But
theerroris

Gup1+aysatag,st. ..
which is another infinite series. As far as we can see this won’t help
us much.

‘We must therefore concentrate on the sequence of approximate
sums

by, b2, b3, b, - .«
and see if we can give a meaning to the ‘limit’ of this sequence.

Example (1) should help, because we do expect it to have a sum,

namely 2. For it, the approximate sums are

1
by = Z—F.
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The difference b, —2 can be made as small as we please by taking n
large enough. Thus to make
1 1
~Too0000 =%~ = *To00000
we only need make

1/2*-1 < 1/1 000 000
which works for n > 21. To make
1 1
1oooooooooooos"' 2< +l 000 000 000 000
weneed n > 41. Andsoon.

This, and similar examples, leads to a definition. The sequence

b, is said to tend to the limit lif the difference
by—1
can be made as small as we please by taking  sufficiently large.!

A sequence which does tend to a limit is said to be convergent.
(The limit / must be a rea/ number: we do not at this stage talk
about ©.)

Having defined ‘limit’ for the 5, we can give a meaning to the
infinite series

ay+az+as+as+. ...
It is the limit / of the sequence b, of approximating sums, provided
that limit exists. If it does, we say that the series is convergent. It
need not always exist, as the troublesome series S demonstrates.

We can now talk about the sum of an infinite series, but only if
we can prove it convergent. (There are other, less natural, defini-
tions which allow us to assign a sum to series not convergent in our
sense - in fact the troublesome S turns out to be well-behaved in
some of these theories, and has sum 1/2 - but we won’t discuss
these.)

Once we can talk about sums, we can ask about the laws of
algebra. Can we put brackets in wherever we want, or rearrange
terms?

Even for convergent series, this is not always possible. The

series
K=1-3+3-3+4-4...
can be proved convergeat: in fact its sum is log,2 which is about

o
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What then, is wrong with the following argument??

2K =2—}+3-1 -ttt
=2-1+3—3+1—3+1-1+E-1 4+
=Q-D—3+G-H—i+d-bH-...
=1—-4+i—3+4—...
=K.

Therefore 1-38 = 0-69.

‘The Completeness Axiom

Our definition of convergence has one unsatisfactory aspect:
before we can prove that a series converges we have to guess the
limit / towards which it converges. Thus it is relatively easy to
prove that (1) converges once we have guessed that the limit should
be 2. As yet we have no way of testing for convergence other than
guessing a limit,

Progress on this depends on taking another look at the ‘error’
terms

d,,..,l+d,,+z+a,+3+. ..
which we prematurely dismissed as useless. For a convergent
series, these errors are ‘small’. Can we make this idea precise, and
use it as a basis for a convergence criterion?

Let’s try to approximate the error. (This looks doomed to
failure, because we must then take into account the error in this,
but we may as well see.) We get now

L3}

Gyy1+0y4a

Gys1tH0yiatay,s

[T A 7 A
Suppose that these are al/ small. In fact, suppose that there exists
some small positive number & such that

—k <ay+... ta <k

for every m. Then it is reasonable to say that the whole error term
is ‘small’, and that its size is < k.
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In other words, a convergent series should have the following
property. Pick any k > 0. Then we can find an integer 7 (de-
pending on k) such that for any m the ‘approximate error’

Guirte e tps,
issmaller than k.

And conversely if we can do this, then the errors get arbitrarily
small: we would expect the series to converge.

Now the nice thing about the above idea is that it doesn’t in-
volve any infinite sums, and it doesn’t involve guessing a limit. It
talks only about finite sums of terms from the series. In return for
this we have to handie a statement whose logic is fairly compli-
cated, but no matter.

It is here that the real numbers come in. If we thought that all
numbers were rational we could define a limit of a sequence of
rational numbers to be a rational number / with the property that
the members of the sequence get arbitrarily close to L We could
also make the above analysis of error terms.

Consider now the decimal expansion of v/2:

v2=1414213....
Wecanviewthisasaninﬁnitesuim
4 1 2 1 3
4t —t—F————t———Ft—+....

10 100 1ooo 10000 100 000 1 000 000
Now the approximate error in stopping after # terms is at most
000...0999...9

Nt —
n m
and however large we take m this is less than 1/10". For large
enough n, 1/10" becomes arbitrarily small. We would therefore
expect the series to converge.

On the other hand, if it does converge, it must converge to /2,
which is not a rational number.

Nonetheless it is a series all of whose terms are rational; and in
our ignorance we expect it to have a rational sum: but it doesn’t.
This is an awkward phenomenon. Our intuitive feeling is that it is
caused by the absence from the rationals of certain numbers like
4/2. We get the real numbers by filling in the holes.

For logical precision, we add an extra axiom to the axioms for
rationals, known as the completeness axiom. It ensures the
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existence of a real number which is the limit of a given sequence
for which the error terms become arbitrarily small.

Continaity

In the chapter on topology we came across the concept of a con-
tinuous function. The same concept is of fundamental importance
in analysis.
If we draw the graph of a function such as
fx) =1-2x—x?
(Figure 164) we see that there are no ‘jumps’ in the graph.

AR\

™

Figure 164

On the other hand, the graph of first-class postage rates for
letters (at the time of writing) has a number of jumps (Figure 165).

The first function is continuous, the second discontinuous.

In the early days of analysis it was thought that any function
defined by a nice formula must be continuous. This is a pious but
vain hope: the function

9(x) = x+v(x—1)x—2)
has the graph of Figure 166.



Real Analysis 237

P 30
m- ——
10" ————
10 20 30
oz
Fgure 165
\L
NS
Figure 166

One must therefore be more careful. Euler tried to define a
continuous function as a ‘curve described by freely leading the
hand’ but this was not very helpful. Cauchy at first defined it as‘a
function for which an infinitesimal change in the variable pro-
duces an infinitesimal change in the value’. This is nice if you
know what an infinitesimal is, but nobody did: naive attempts to
handle it suffered from the same rash of paradoxes that in-
capacitated the infinite.

The definition in current use is based upon the idea ‘no jumps’.

As with the housemaid’s baby, so with jumps: a small one is
just as unhappy an occurrence as a big one. This means that we
allow ourselves to use.a microscope, 8o to speak, whean looking
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for jumps. Under a microscope a jump will look something like

Figure 167.
b
H /
---{A Rl
w{ ; "
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Figure 167

The jump has a definite width w. So if we take p, little to the left
of x and p, a little to the right then the values f(po) and f(p,) will
differ by about w(~w). However, if we take p, and p, too far
away we can’t expect to say anything much about f(po) and f(ps).

The standard definition of continuity of a function f defined on
the set of real numbers is designed to eliminate jumps. We say
that fis continuous at a point x if by choosing po and p, sufficiently
close to x we can make f(po) and f(p,) as close together as we
please.® Then we say that £ is continuous if it is continuous at all
points x.

The advantage of this definition over Euler’s is that we can
prove certain functions to be continuous, For instance, take

f(x) = x2
To prove this continuous at 0 we note that if p, is taken between
~k and 0 and p, between 0 and k, for a positive number , then
—2k* < po*—py? < 2K%

The size of the difference is 2k2, and by choosing & small enough
we can make this as small as we please. To make 2k* < 1/1 000000
we need only take k < 1/10 000, and so on. To prove f con-
tinuous we must do the same sort of thing at all points x, instead
of just 0: the algebra is more complicated, but quite easy.

Functions can be continuous at some points and discontinuous
at others. The postal-charge function is discontinuous at 2, 4, 6,
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8, 10, 12, 14, 16, 24, and 32 oz., but continuous everywhere else
in the range 0 to 32 oz,

However, some functions can behave in a very funny way,
which shows that although we may have a good definition it
might not be exactly the ane we intended. The function A such that

h(x) = {

0 if xisirrational
1/qif x = p/q is rational

is continuous at all irrational points but discontinuous at all
rational points. Even more curiously, it is not possible to find a
function which is continuous at all rational points but discon-
tinuous at all irrational points!

Of course this is a very funny function.

The definition of continuity we have given turns out to be com-
pletely adequate for setting up all the machinery of analysis,
despite its peculiarities. However, there may well be a better way
of proceeding. Recently the idea of an ‘infinitesimal’ has been
made respectable by using a rather complicated construction
from mathematical logit. Cauchy’s definition of continuity can be
made rigorous. However, I would not advocate teaching ‘non-
standard analysis’, as it is called, to a student: the logic of the
subject is exceedingly subtle.

In fact no one has yet found a very satisfactory way of intro-
ducing rigorous analysis, particularly at school level.

Proving Theorems in Analysis

A puzzle which was current not long ago concerns a man walking
up a mountain. At exactly 9 o’clock on Monday morning he sets
off up the mountain, arriving at 6 o’clock in the evening at a
mountain hut, where he stays the night. At 9 o’clock the next
morning he descends by the same route, arriving at the pqint from
which he set out at 6 o’clock in the evening. Prove that at some
time he is at the same place on both days.

A moment’s thought might suggest an answer: on the second
day imagine a ghost walking up the mountain, copying exactly
what the man did on the first day. Since the ghost is going «p and
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the man down, they must meet: this will provide the time of day
asked for by the puzzle.

Hidden in all this is a theorem in analysis. For we have assumed
that the man’s progress is continuous. If, by some technological
miracle the man could jump from one part of the mountain to
another without passing through the part in between, he might be
able to avoid the ghost.

We could draw a graph of the man’s progress on the two days
(Figure 168), in which case the idea of the proof stands out: the
WO curves must cross.

u,

9 6

Figure 168
For discontinuous curves, this need not happen (Figure 169).

oP \%’m
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Figure 169

Now in analysis we cannot argue from a picture, because the
picture may lic. We have to work logically from the definition.
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(Of course, we should bear the picture in mind!) The theorem we
want should say something like this: suppose we have two con-
tinuous functions f and g defined on the real line, such that at two
points aand b we have
fl@) <gla) £5) > g(b).
Then at some point ¢ between g and b we must have
fle) = g(o).

(See Figure 170).
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Figure 170

We could prove the theorem like this. Divide the interval be-
tween aand binto 10 parts. For some of these fstays smaller thang
(Figure 171). Take the first one where f becomes greater than g,

e

P I

Fygure 171
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and divide it up into 10 parts. Take the first of these, divide it up
into 10 parts . . . and so on. The end-points of the intervals will
form a sequence

P1sP2sP3s < o«
and an application of the completeness axiom shows that this
sequence converges to a real number p between a and b. A little
more work, using the definition of continuity, shows that f(p) =
().
If in Figure 171 wehad a = 0, b = 1, then we would find that

P =05

P2 =058

ps =0583

and it is clear that the procedure leads to an infinite decimal
p=0583....

What the completeness axiom does, in fact, is to make infinite

decimals respectable. And of course my reason for dividing into

10 parts at each stage was to fit in with decimal notation. It

would have worked just as well if I had divided into 2 parts, or 19,

or 1066.

The use of the completeness axiom in this theorem is essential,
because the theorem is not true over the rational numbers. The
function

f(x) =1-2x—x?
is a continuous function on the rationals. Further f(0) =1,
f(1) = —2. If the theorem were true for rationals there should be
a rational number p between 0 and 1 such that
1-2p—p? =0,
But this makes p = 4/2—1, which is not rational. So we can't
escape without using completeness somewhere.

We could, of course, dismiss the rigorous proof as being
superfluous: if a theorem is geometrically obvious why prove it?
This was exactly the attitude taken in the eighteenth century. The
result, in the nineteenth century, was chaos and confusion: for
intuition, unsupported by logic, habitually assumes that every-
thing is much nicer behaved than it really is.
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Good ideas in mathematics should never be ignored just be-
cause a rigorous foundation is lacking. But if they are allowed to
develop too far without finding an underlying rationale they
usually lead to trouble.



Chapter 17 The Theory of Probability

‘Statistics is a branch of theology* =
A Cambridge research fellow

Probability theory has its origins in questions about gambling. In
a game of cards, or dice, when do I have the best chance of win-
ning? What are the odds?*

Because games are usually finite, the methods needed to handle
such questions are combinatorial, that is, based on counting
argumeats. For example, to find the chance of throwing three
consecutive heads with a coin one lists the possibilities

HHH HHT HTH HIT

THH THT TTH TIT
which are 8 in number. Exactly 1 is favourable, so the probability
is 1/8.

This of course makes the assumption that throws of H or T are
equally likely. Now we can’t define ‘equally likely’ by saying
“probability 1/2° until we have defined what we mean by ‘pro-
bability 1/2°: and we can’t do that without defining ‘equally
likely’. Or at least, 50 it scems.

If we try to get round it by doing experiments, we run into
another difficulty. If H and T are equally likely, then in a long
series of throws we would expect to have approximately equal
numbers of H and T. Not exactly equal, of course: they couldn’t
possibly be equal in an odd number of throws anyway, and in an
even number of throws there would probably be’a small dis-
crepancy. Toss a coin 20 times and see if you get exactly 10 heads.
(If you do, try several more times and see how often it happeas!)

What we would hope is that in the limit’ the ratio of the num-
ber of Hs to the number of T should ‘tend to’ 1/2. The trouble is
that this ‘limit’ is not a limit in the usual sense of analysis. It is
conceivable that we might throw a sequence consisting entirely of
Hs with a fair coin. It is, of course, unlikely. But to set up an idea
of ‘limit’ which takes account of this possibility involves making
precise what we mean by ‘unlikely’, which seems to require a
definition of ‘ probability’ again!
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It wasn’t until the 1930s that these difficulties were circum-
vented. This was achieved by developing an axiomatic probability
theory. By divorcing the mathematics from its applications one
can develop the mathematics without any logical qualms: then it
can be tested experimentally to see if it fits the facts. Axiomatic
probability theory succeeds for the same reason that axiomatic
geometry succeeds.

Combinatorial Probability

For the moment assume that we know what ‘equally likely®
means. Then a rough working definition of the probability p(E) of

an event Eis .
p(E)-numbuofwaysinwhichEmm
total number of possible occurrences
(provided all occurrences are equally likely).
Thus there are 36 ways of throwing 2 dice; and 5 of these givea
total of 6 (namely 1+5,2+4,3+3,4+2,5+1).
Therefore the probability that the total is 6is
number of ways of throwing 6
' 36

which is 5/36.

Since the numbers involved are positive, and since the number
of ways E can occur is at most equal to the total number of
oocurrences, we see that )

0<pE)<1.
If p(E) = 0 then E is impossible; if p(E) = 1 then E is certain.

The techniques of combinatorial probability centre around
ways of combining events. Suppose we have two distinct events
E and F. What is the probability that either E or F occurs?

Take the case of a die. E is the event ‘6 is thrown®’ and F the
event ‘5 is thrown’. E or Fis ‘5 or 6 is thrown’ which obviously
occurs 2 times out of 6. So

MEor F)=1/3,
In geoeral, let N(E) and N(F) be the number of ways in which E
and F can occur, and T the total number of occurrences. Then
PME ot F) = N(Eox F)/T.
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What is N(E or F)? Suppose the events E and F do not ‘overlap’.
(Il return to this point.) Then
N(Eor F) = N(E)+N(F)

KEor F) = (N(E)+N(F)/T
= (NE)T+(NF)T
= p(E)+p(F). ¢V}
If, however, E and F do overlap then N(E)+N(F) counts
everything in the overlap fwice whereas N(E or F) only counts it
once.
Suppose, for instance, that
E = * A prime number is thrown’
F = *An 0dd number is thrown’.
Then E occurs in three ways: 2, 3, 5. (Note: 1 is not prime.) And
F occurs in three ways: 1, 3, 5. But E or F occurs in four ways:
1,2,3,5.S0
NE)=12 pF)=12 pEorF)=2/3.
‘What happens in general is that
N(E or F) = N(E)+N(F)—N(Eand F) @
because subtracting N(E and F) puts right the double count in
the overlap. In the above example, E and F occurs in two ways:
3, 5. So the equation gives
4=343-2

so that

which is correct.
Dividing (2) by T we get
PEor F) = p(E)+p(F)—p(E and F). (©))

Enter Set Theory

We can express these ideas much better in terms of sets. The
possible outcomes when throwing a die form a set
X=1{1,2,3,4,5,6}
The events Eand Fare represented by subsets of X
E=1{2,3,5}
F={1,3,5}
asin Figure 172,
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X
Figure 172

The event ‘Eor F is the set {1, 2, 3, 5} which is the union E U F.
Theevent ‘ Eand F” isthe set {3, 5} which s the intersection E N F.
‘The probability p is a function defined on the set & of all subsets
of X with target R. In general we can say a little more about p:
it has target [0, 1], where this denotes the set of real numbers
between Oand 1.
Abstracting from this we obtain the idea of a finite probability

(i) a finite set X,

(ii) the set & of all subsets of X’

(iii) a function p: & — [0, 1] with the property that

ME U F) = p(E)+p(F)—p(E 0 F)

forall E, Fe &.

Axiomatic probability theory works entirely in terms of prob-
ability spaces. However, if one wishes to consider infinite prob-
ability spaces, the definition has to be made more subtly. In many
applications it is necessary to have infinite sets X: for example the
height of a man can be any real number (within certain limits) so
there are infinitely many possibilities.

Independence

Another basic operation in probability theory deals with two
trials in succession: what is the probability of event E occurring
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on the first trial, event Fon the second? For example, we throw a
die twice: what are the chances that we throw first a 5, then a 2?

Of the 36 possible combinations, only 1 is favourable: §
followed by 2. So the probability is 1/36.

If E and F were the events considered in the previous section,
then E can occur first in 3 ways, F second in 3 ways. We can pair
any occurrence of E with any of F, giving 3 X3 = 9 favourable
outcomes. So the probability of E followed by Fis 9/36 = 1/4.

In general we must suppose that there are T, possible outcomes
of the first trial, of which N(E) are occurrences of E; and T, in the
second, N(F) being occurrences of F. Then in the two trials
together the total number of outcomes is T x T, because any of
the T, possibilities for the first can be followed by any of the T,
possibilities for the second. In the same way the number of ways
in which E can occur first, followed by F, is N(E) x N(F).So

A followed by F) = NEXNE)
I,Tx
_N® N
Tl Tz
= p(E) X p(F). @
In this calculation we must assume that E and F are independent:
that the outcome of the first trial does not alter the probabilities
in the second one.

This would not be the case if, say, the second event F was ‘the
total thrown is 4°, For if the first throw is 4 or more, the chance of
success on the second is 0; if the first throw is 1, 2, or 3 the chance
of success on the second is 1/6.

The notion of independence can be formulated in terms of
probability spaces. In applications, one takes as hypothesis the
independence of the real-world eveats to be considered, applies the
theory, and tests the result by experiment.

Paradoxical Dice

Often our intuition about probabilities is wrong. Consider four
dice 4, B, C, D marked
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A: 0 0 4 4 4 4
B: 333333
C:2222171

D:11155S5.
(The precise arrangement of faces does not matter.)

What is the probability that in a single throw die 4 will have a
higher number showing than die B?

B always throws a 3. If A throws 4, which happens 4 times out
of 6, he wins. If he throws 0, which happens 2 times out of 6, he
loses. Therefore

A beats B with probability 2/3.

If B is thrown in competition with C it will win when C shows

2,lose when Cshows7.So
B beats C with probability 2/3.

If C plays against D matters are more complicated. With
probability 1/2, D shows 1, and then C always wins; with prob-
ability 1/2 D shows 5 and C wins by showing 7 with probability
1/3. The probability that C will win is therefore

t1+id=4+4 =4

C beats D with probability 2/3.

Finally, look at D versus 4. If D shows 5, with probability 1/2,
then D always wins. If D shows 1, with probability 1/2, then D
wins if A4 shows 0, which has probability 1/3. The probability that
D will win is

Thus

1+ =%

D beats A with probability 2/3.
Now a die which wins more often than not is clearly ‘better®
than one which loses more often than it wins. In these terms,
A is better than B
B is better than C
C is better than D
and D is better than 4.
There is nothing wrong with these calculations. If you play the
game in practice, and let your opponent choose his die, then you
can always choose another that gives you odds of 2: 1 for a win.

Thus



250 Concepts of Modern Mathematics

We expect that A better than B better than C better than D
should mean A better than D. We’re wrong. In the present con-
text the meaning of ‘better than’ depends on the choice of dice:
we are really playing four djfferent games. It is as if we had four
people playing games: Alfred beats Bertram at tennis, Bertram
beats Charlotte at chess, Charlotte beats Dierdre at badminton -
and Dierdre beats Alfred at shove-halfpenny.

Those economists who believe that commodities can be ordered
by majority preference might take note of this phenomenon.

Binomial Bias

Imagine a biased coin. Instead of coming down heads and tails
with equal frequency, it has a preference for one particular side.

Such a coin provides a model for many probabilistic processes.
If we are throwing a die and are interested only in whether a 6
turns up, we are effectively dealing with a biased coin such that
p(head) = 1/6, p(tail) = 5/6. 1f we are looking at the sex of new-
born babies, we have p(boy) = 0-52, p(girl) = 0-48.

In general we let

p = p(head)

g = p(tail)
and of course p+¢g = 1, because from (1) above
p(head)+p(tail) = p(head or tail) = 1.
Using the theory of independent events we easily find the follow-
ing list of probabilities for sequences of heads and tails:
H p HH p?* HHH p?
T g HT pg HHT pq
TH pq HTH p%
T ¢* HIT pqg?
THH p*q
THT pq*
TTH pq?
TIT 4.
What is the probability that we throw a given number (0, 1, 2,
or 3) of heads? We have to group together sequences with the
same number of heads. Thus for 2 heads in 3 throws we get
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HHT, HTH, THH, each with probability p?¢, which gives a total
probability of 3p?q. Similar calculations give another table:

number of heads

0 1 2 3

number 1 q P
of 2 @ | 2 | P
throws 3 l'id Ipg? 3p*q | P

The rows of this table should look familiar: compare the ex-
pansions

@+p) =q+p

@+p) = ¢*+2p9+p*

@+p)* = ¢*+3pg*+3p*q+p°
The terms on the right are exactly the entries in the table. The
Dnext row ought to come from

(@+p)* = ¢*+4pg®+6p*°¢*+4p°¢+p*
and it is good practice to check that it does. In general, the entries
in the ath row will be the terms of the expansion of
@+p)"
This is not a coincidence, and it is not difficult to explain it. To

expand, say, (¢-+p)* we must work out

(¢+pXg+pXq+PXg+PXq+D)-
The terms with exactly 3 gs come from products like this:

99 9pPpP
[ A 4
9 9P 0P 4
9 P 9 49pP
9P 9P 4
q9 PP 94
P g9 q94a9p
P a9 90pP 49
P apP 99
PP 949

These correspond exactly to the 10 possible sequences of 3 tails
and 2 heads:
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TTTHH
T THTH
T THHT
T HTTH
THTHT
T HHTT
HTTTH
HTTHT
HTHTT
HHTTT

Obviomlytheumeholdsinmufwewﬁte(:)fmthenum-

ber of sequences of n Hs and T containing exactly » Hs and
(n—r) T, then the probability of getting exactly r headsin » throws
is

(:)p'q'-'.
ltisn‘ttoohlrdtowukoutwhn(:)is.lfwedwontherpod-

ﬁomfotﬂuhme\uydlinahdeumﬁnd;so(:)isjnmthe

number of ways of choosing 7 things from ». This, it can be
shown, i8 givea by

n\ _ mn—1Xn—2)...(n—r4+1)

vr) rr=1%r-2)...1 °
Thus for sequences of 2 heads and 3 tails we want

54

The general expansion is
@+ =+ 1+ ... +(:)p’q'"+ oo P

This is the Binomial Theorem, usually credited to Isaac Newton,
ltnnyorm-ynotbecdndamwthatatonewiod}lewwnwn
Master of the Royal Mint,
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The average number of heads obtainable in # throws can be cal-
culated from this formula, and it turns out to be np. Thus the
frequency with which heads occur is ap/m, which is p. So we
have come full circle to the idea of a probability as an ‘average
frequency of occurrence’. This theorem, which in a stronger form
is called the Law of Large Numbers, shows how our mathematical
model connects up with observations in the real world.

Random Walks

In the final section of this chapter I want to discuss another type
of problem arising in probability theory. It has applications to
questions about electrons bouncing around inside crystals, and
particles floating in a liquid.

Imagine a particle starting at position x == 0 on the x-axis, at
time ¢ = 0. In time ¢ = 1 it moves to the point x = —1 with
probability 1/2, or to the point x = +1 with probability 1/2. If it
is in position x at time #, then at time 71 it moves either to x—1
or x+1, each with probability 1/2. What can we say about the
particle’s subsequent motion?

-5 0 +5

F YL WY S T TN TS G S VA W S Sy

Figure 173
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For example, it may move left and right according to the

sequence

LRRRRLLRLRLLLRLLLLLLRRLRR
in which case its motion is as in Figure 173, with the path stretched
a little in the ¢ direction for clarity. This is a fairly typical path:
if you want, you can use a coin to decide between L and R and
construct other paths for yourself.

Instead of a line we could consider a plane: now the particle
moves either 1 unit up, down, left, or right; each with probability
1/4. Or a 3-dimensional walk, with 6 possible directions each
having probability 1/6.

Especially interesting is the question: given any other point X,
what is the probability that eveatually (we don’t mind how long
it takes) the particle reaches X?

One would expect this to decrease as X gets further away from
the origin. In fact it does nothing of the kind: the probability
remains the same for all X. In a random walk every point is as
good as every other point, in the long run.

For a random walk in 1 or 2 dimensions, this probability is 1.
1t is almost certain that the particle will reach any given point X.
(I say ‘almost’ because it may not do so: it could rush off to the
right and never be seen again. But this has probability 0. With in-
finite processes, it is not quite true* that probability 1 means
‘certain’ and 0 ‘impossible’.)

But in 3 dimensions, the probability is only 0-24.

If you were lost in 1- or 2- dimensional space, and wandered
about at random, then with probability 1 you would eventually
find your way home. In 3 dimensions your chances of getting
bome are less than 1 in 4.

However, in all cases, the average time it would take you to
arrive home is infinite. More precisely, pick any time #, — it might
be 5 seconds or 3000 years. Then if you keep wandering, on most
occasions you will be away from home for a time larger than 7.
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*A hydrodynamicist was reading a
research paper translated from the
Russian, and was puzzled by references
10 a “water sheep ", It transpired that the
paper had been translated using a
computer : the phrase in question should
have read “ hydraulic ram” -
Cautionary tale
Strictly speaking, computing is not part of mathematics, bat a
discipline in its own right. The computer is not a concept of
modern mathematics: it is a product of modern technology. Never-
theless most modern mathematics courses in schools include a
certain amount of computing, and quite rightly so; for the com-
puter is a powerful tool of great practical importance in the appli-
cations of mathematics to the modern world.

On the whole computers play no role in theoretical mathematics.
In order to be able to put a problem on to a computer one must
in principle know exactly how to perform the steps necessary to
salve it. From the theoretical viewpoint this means that the pro-
blem is as good as solved already, especially if the main concern is
method. But to get results (which in practical applications are of
course the main desideratum) a method which works in principle
is not enough: it must also work in practice. The importance of
the computer lies in its ability to bridge the gap between principle
and practice.

The computer is also of interest to the mathematician because
of the mathematical ideas which underly its construction.

I want, in this chapter, to give some small idea of both the
mathematical and practical considerations behind the design and
use of computers. For the technical details the reader must con-
sult a specialist book.*

Binary Notation

Basically the computer is a calculating machine. That is to say it
is given data, in the form (usually) of numbers, told how to
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manipulate these data, and it then prints out the results. Most
present-day computers are electronic digital computers: they use
electronic circuitry to store and manipulate numbers in digital
form. However there are other possibilities: among them optical
computers (which use beams of light) and fluidic computers
(which use streams of liquid or gas). And in a moment I intend to
illustrate some of the ideas behind the design of a computer in
terms of a machine which uses ball-bearings.

A computer cannot operate directly with numbers, since num-
bers as such do not exist in the real world. It is necessary to repre-
sent numbers in the machine in some physical fashion. In an
analogue computer a number x is represented by x units of current :
but the problem of maintaining accuracy, the inflexibility of such
a machine, and its slowness of operation, render it fit only for a
limited range of tasks. Something more subtle is needed.

The simplest devices capable of representing numbers are those
which can exist in either of two stable states. A switch may be on
or off. A current may either be flowing or not flowing. A magnet
may be magnetized north-south or south-north. The possibility
of using such devices to store and manipulate numbers is opened
up by the existence of the binary notation.

In everyday arithmetic we represent numbers by decimal
notation. Thus

365 = (3x10%)+(6%10)+(5x1)
1066 = (1 X 10%)+(0 x 10?)+(6 X 10)+(6 } 1).
The occurrence of the various powers of 10 here is one of choice
rather than necessity. There is no special reason why we have to
use 10: we could use, say, 6 instead. The sequence of numbers
would then be
1=(1x1)
2=(2x1)
3=03x1)
4 =(4x1)
5=(5x1)
10 = (1 x6)+(0x1)
11 = (1 x6)+(1 x1)
12 = (1 x6)+(2x1)

ese



Computers and Their Uses 257

55 = (5x6)+(5x1)
100 = (1 X6*)+(0x6)+(0x1)

Such a system might be evolved by creatures having only 6
fingers.

The simplest notational system of this kind is the binary
system, which uses powers of 2, This is the system we would have
evolved had we counted on our 2 hands instead of our 10 fingers.

The only digits needed are 0 and 1, and the sequence of numbers
runs

1= axn [=1)
10= (A%x2)+(0x1) [=2]
1= (Ax2)+(1x1) [=3]
100 = (Ax2%)4(0x2)+0x1) [=4]
101 = (A%2%)+O0x2)+(1x1) [=5]
110 = (1x2%)+(1x2)+(0x1) [=6]
1= Ax2)+Ax2)+(Ax1) [=7]

1000 = (1 x2%)+(0x2%)+(0x2)+(0x1) [=8]
1001 = (1 X23)4+(0%23)+(0%x2)+(1x1) [=9]

(where the figures in square brackets give the number in ordinary
decimal notation).

The ordinary methods of adding, subtracting, multiplying, and
dividing apply in this notation; except that anything larger
than 1 is ‘carried’. The necessary information for addition is given
by

0+0=0
140 =1 (S
0+1 =1
1+1 =0camyl.
The multiplication table is even easier:
0x0=0
0x1=0 (%)
1x0=0
I1x1=1,
Children brought up with this notation would have little trouble
learning their tables!
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All of arithmetic can be carried out on the basis of the tables
(+) and (x). For example, to multiply 11011 by 1010 by
standard long multiplication we write

11011
1010

11 011 000
110110

100001 110

111
(where the small s are carry digits).

As a check you should note that in decimal notation 11 011 =
16+8+2+1 =27, 1010 =8+2=10, and 100001110 =
256+-8+4+2 = 270.

The point is that binary and decimal arithmetic differ only in
choice of notation: they are both about the same kinds of number.

A Ball-Bearing Compater

1 want to illustrate how the tables (+) and ( X) can be realized by
a machine. In order to take our minds off the wizardry of elec-
tronics I shall show how to use ball-bearings to make an adding
machine. The general principles are the same for an electronic
computer, except that it uses pulses of electricity instead of ball-
bearings.

First we must design a component which behaves according to
the table (+). It should have two stable states (which for con-
venience we denote by 0 and 1) and should react to an ‘input’,
also taking values 0, 1, as follows:

input | initial state | final state | output

0

YY-X-}
== O
[N -]

1
0
1
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(The initial state of course represents one of the digits being
added; the input is the other digit; the final state is the sum digit;
the output the carry digit.)

If we use 1 ball-bearing to represent an input of 1, and 0 ball-
bearings to represent an input of 0. we can make an ‘adder” as in
Figure 174 using a T-shaped component pivoted at the junction
of upright and crossbar. Gravity will provide the motive force.

- STATEOQ
—
‘waste
—_—
output
STATE1
input
‘waste
—_—
outpt
—_——)
Figure 174
It will be seen that

@) If the device is in state 0 and input 0 (i.e. no ball-
bearing) is applied, it stays in state 0.

(ii) Similarly if it is in state 1 and O is input it stays in
state 1.
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(iii) If it is in state 0 and 1 is input by rolling a ball-bearing
through, then the T tips up to state 1. The ball-bearing
emerges through the ‘waste® channel: the output is 0.

(iv) If it is in state 1 and 1 is input the T tips back to the
0 state. But the ball-bearing emerges through the output
channel, giving output 1.

Thus our device does exactly what is required.

Now we can build a full-scale adding machine by combining
together several of these ‘adding units’. Let me represent the
device by the symbol of Figure 175.

out n

h

‘The “circuit’ of Figure 176 then acts as an adding machine,

Figure 175

Figure 176

To perform (say) the addition of 11 011 000 and 110 110 (which
we did in the multiplication above) we set up the first number in
the machine and input the second by means of ball-bearings, as
shown schematically in Figure 177.

If we imagine the ball-bearings added one by one, from right to
left, we can follow the steps of the calculation. There is no ball-
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1 1 O 1 1 O
e O o 0

bearing in the first slot. The one in the second slot changes 0 to 1
and is output as waste, leaving the machine in states
011011010
The same happens with the third slot:
011011110

The fourth slot has no input. The fifth has one ball-bearing, which
passes through, changes the 1 to a 0, and is output as a carry into
column 6:

011001110

1«

Then it passes through again, changing 0 to 1 and emerging as
waste:

011101110,

Finally the ball-bearing in column 6 drops through, making a
series of changes as follows:

011001110
1«
010001110
1+

000001110
1e

100001110,

This is the correct answer.
The reader should check that the sequence of operations above
corresponds exactly to what happens in the addition sum, and
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also try a few other examples. An interesting practical problem is
to find the correct spatial arrangement of the components to make
the machine work using only gravity as a motive force. This can
be done.

Of course in an electronic computer one uses pulses of elec-
tricity instead of ball-bearings and electronic components in-
stead of T-shaped barriers. But the underlying idea is similar.

Multiplication can be carried out too (as a series of additions,
for example). By the use of a small number of basic circuits, re-
peated many times, it is possible to build a versatile and accurate
calculating machine. Since electronic circuitry reacts very quickly,
it will also be a fast machine.

The Structure of Computers
The ideas we have just touched upon allow the construction of an
arithmetic unit. However, there is more to a computer than this,

for an arithmetic unit alone has no flexibility. The basic structure
of a computer is shown below.

| INPUT |->{ MEMORY |->{ OUTPUT |

ARITHMETIC
UNIT

The memory of the computer has two functions. First, it stores
the numbers which are input, which crop up in the calculation,
or are about to be output. Secondly, it stores the program (the
American spelling is standard in this field) which tells the
machine what steps to make in the calculations. The computer, so
to speak, looks up an instruction in the program, performs it,
remembers the answer; then it looks up the next instruction, and
80 on.

In the first instance these instructions are in machine language -
a special ‘code’ which the machine ‘understands’. These are of a
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very specialized and precise nature. ‘Remove the contents of
position 17 in the memory and put them in the arithmetic unit.”
‘Add the two digits in the arithmetic unit.’ And suchlike. Even to
multiply two numbers together in machine language requires
many instructions.

For this reason other programming languages have been de-
vised which are closer to ordinary language: an instruction such
C=A+B
would tell the machine to add the numbers stored under the
names of 4 and B and store the result under the name of C. The
machine has to be provided with a compiler program, written in
machine language, which turns each such higher-language in-

struction into a series of machine-language instructions.

There are many kinds of higher language, rejoicing under
names such as Algol, Fortran, Cobol (a commercial language).
Machines are delivered from the manufacturers together with the
necessary compiler programs.

The use of a program is what gives the computer its great flexi-
bility. It will carry out any sequence of instructions which the
programmer gives it. In consequence a great many different tasks
can be carried out by the same machine. The programmer has to
learn one or more of the standard languages, which is not too
hard. Much harder is the art of programming: how to use the
languages efficiently and effectively.

‘Writing a Program

Assuming you have learnt a suitable language, and have a
problem you wish to solve using a computer, how do you go
about writing a program?

The first step is to break the problem down into small pieces,
each of which the computer can perform, and then to write a
program organizing the pieces.

For example, you wish to solve quadratic equations. You know
that the answer to

ax?+bx+c =0
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<

<

<

)

isgiven by
4 o bV —da)
2a
BEGIN
Readina,b,c
Isa-0? VES
q
Print
NO YES Is b = 0? no SO}UﬁOH’ >‘
Work out o \
b’-4ac Work out Print N
-b_| this valu \
Is b*4ac>0? NO Print ‘no real solution’ >
YES \
YES. | Work out Print
Isz-4aC'0? -b/2a thlsvalue 9‘
NO
Work out Work out Print
N (b*-4ac) -b+k this value \
(positive root) 2a
andcallitk Print ‘or’
Work out Primt
bk this value
2a
END

Figure 178
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It is no good just putting this instruction into the computer. It
might happen that (b*—4ac) is negative: the computer will not
realize this and will try to find the square root, with nonsense as a
result. Or a might be 0, in which case the division will not make
sense.

Assume that the computer can do arithmetic, including taking
square roots, and can recognize whether a number is positive or
negative. You might break the calculation down as in Figure 178.
Such a diagram is called a flow-chart.

‘You will see that this chart takes account of several possibili-
ties: if @ = 0 we may have a linear equation; there may be no
real roots, or 1 real root, or 2 real roots.

The next step is to convert the process on the chart into a
program. There is a difficulty here, in that the program is a se-
quence of instructions in order, whereas the chart has bifurcations
and alternatives. To overcome this, different parts of the pro-
gram are given reference letters (A, B, C, D, E in the following
example) and the machine is instructed to jump from one part to
another depending on whether the answer to certain questions is
Yes or No.

Here is a possible program for the above calculation, written in
a hypothetical language based on Algol. It is largely self-
explanatory, if considered in conjunction with the flow-chart.

PROGRAM TO SOLVE QUADRATIC EQUATIONS

A: beginreal a, b, c, k, u, 0, w, x, y
reada, b, ¢
ifa=0thengotoB
y = b*—4ac
ify >0thengotoC
print NOREAL SOLUTION
end

B: ifb=0thengoto B
x = —cfb
print x
end
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C: ify =0thengotoD
k=+y
u = (—b+k)2a
o = (—b—k)2a
print &
print OR
print v
end

D:. w= —bf2a
print w
end

E: print NOSOLUTION
end

The instruction ‘real a, b, c, k, u,v, w, x, y* is known as a
declaration, and tells the computer what symbols are being used
to represent numbers and what kind of number (real). ‘Read’
instructs it to read in the values of a, b, ¢ from some prepared
data tape. An instruction of the form *if P then go to X” is obeyed
as follows: if P is true the machine jumps to the part of the pro-
gram labelled X. Otherwise it goes on to the next line. The other
instructions are self-explanatory: the computer obeys them line
by line in order except when instructed to jump.

This is a fairly typical simple program which I hope may help
to explain how a program is written. You should work through it
with a few specific examples of values of g, b, ¢ to see how it does
the job.

For further details of programming in proper languages, you
should consult a suitable manual.?

The Uses of Computers

Computers can be used, quite simply, whenever one has a lot of
calculation to do of a kind which can be specified precisely.
Whether or not they should be used is often a question of eco-
pomics: they are expensive; is the result worth the expense?
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Computers are used in business and government, mostly to
keep accounts and to file information. Of these uses I shall say no
more except to note in passing that the much-pleaded excuse
‘computer error’ is in reality ‘programmer error’.

The research worker can make good use of computers to pro-
cess his experimental data, plot graphs, calculate tables of
results, apply statistical techniques. He can solve otherwise
intractable equations by numerical methods. There is a danger
that one can become so impressed by the sheer bulk of infor-
mation obtained by computing that one fails to realize that much
of it may be valueless: no amount of computing can produce
useful results from a badly designed questionnaire or experiment.
But the power which the computer lends is enormous. Its use has
given us insights into the structure of proteins, the genetic code,
the fundamental particles of physics, the structure of stars. It has
helped to put a man on the moon.

Even in pure mathematics the computer has scored some
notable triumphs, especially in the study of finite groups. How-
ever, very few problems are suitable for computation; and even
some of those that are would take too long to perform, even for
today’s very fast machines (or tomorrow’s, for that matter).

The uses of computers are not confined to numerical problems.
Computers have been programmed to play draughts (well) and
chess (badly), to translate from one language to another (exec-
rably), to compose music (of sorts) and poetry. Some of the recent
advances in producing ‘intelligent’ machines are quite remark-
able.

This brings me naturally to the oft-asked question ‘Can
computers think?’ As Joad would have said, it all depends what
you mean by ‘think’. As yet, the computer can perform some of
the functions of the human brain faster and more accurately;
others it cannot perform at all. But if we ask, ‘Is there something
special about the way in which human beings think which in
principle can never be performed by some kind of machine?’ then
my personal opinion is that the answer is ‘No’. Certainly we can-
not duplicate the functions of the brain at the present time; and it
is fairly certain that the resemblance between the brain and exist-
ing computers is about as close as that between a cow and a milk-
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lorry. Our technology may well never get anywhere near makinga
truly ‘intelligent’ machine: the human brain may well be too
stupid. But I don’t think there is any obstacle to the production
of a machine which performs the functions of the human brain;
not any logical obstacle such as prevents 4/2 from being rational
or a man from lifting himself by his bootstraps; for the following
reason: the human body is visibly a machine, in the sense that it
composed out of matter and the components obey the same laws
as other matter. It is a very complicated and wonderful machine
which we don’t understand. If there were in principle an obstacle
to the construction of machines which behaved like people, then
there would be no people.

This is not to reduce humanity to the level of a can-opener.
Many people insist that the complexities of human behaviour,
the emotional, creative, and spiritual attributes, must be con-
sequences of something ‘greater’ than physical laws. This is a
wonderful concept. How much more wonderful it would be,
however, if these very attributes were consequences of physical
laws. Far from demeaning humanity, this would elevate physics!



Chapter 19 Applications of Modern
Mathematics

Although I have talked in terms of divisions of mathematics into
various branches — algebra, topalogy, analysis, logic, geometry,
number theory, probability — it must be realized that no exact
boundaries can be drawn, and that the divisions themselves are
somewhat arbitrary. When Descartes first discovered connections
between geometry and algebra it was a surprise. When Galois
applied the theory of groups to polynomial equations it was a sur-
prise. When Hadamard and de la Vallée Poussin proved an im-
portant conjecture about prime numbers using analysis it was a
surprise. Today mathematicians are no longer surprised by such
occurrences. In fact they tend to go out looking for them. It is
quite commonplace to start with a problem in analysis, turn it into
topology, reduce it to algebra, and solve it by number theory.

It is this unity which makes it feasible to talk about the ‘ceatral
body of mathematics’ as I did in Chapter 1. The subject is so
interconnected that a genuine advance in any part of this central
body is of importance for the whole of mathematics. Mathematics
is a harmonious whole: except that the harmony is incomplete,
because there are always gaps in our knowledge and vaguely
understood hints of new interrelations.

In this sense, an application of any mathematics from this
central body is an application of the whole. If you insist that
mathematics justify its existence by providing applications, then
an application of one part will justify the whole. We do not cut off
a violinist’s feet just because he doesn’t use them in playing the
violin: in the same way we ought not to dismiss group theory just
because it won’t pay the rent.

Traditionally there are two kinds of mathematics: pure, and
applied. The pure mathematician has his head in the abstract
clouds and studies the subject for its own sake: he is not interested
in applications, and if anything tends to denigrate them. The
applied mathematician has his feet on the concrete and provides
a useful service to society.
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Like most traditions, there is a grain of truth in this one.
Mathematics is such a large subject that workers are forced to
specialize in some small part. If this part has no direct applications
to the real world they are placed in the ‘pure’ category: if it does
have applications they are placed in the ‘applied’ category. But a
great deal of supposedly pure mathematics has important appli-
cations, and a great deal of supposedly applied mathematics has
no useful applications at all. I am reminded of a man who de-
veloped a mathematical theory of the paintbrush. To set up
equations he could solve he had to assume that the bristles of the
brush were semi-infinite planes. So his theory gave no insight
whatever into paintbrushes; and precious little into mathematics
because he deliberately set up equations that could be solved by
known methods.

1 would prefer to say that there is (i) mathematics, (ii) appli-
cations of mathematics. The job of the mathematician is to pro-
vide powerful tools for solving mathematical problems: these
may be suggested by possible applications, they may be part of a
more abstract investigation into stumbling-blocks in mathe-
matical technique, or important unsolved problems. As I said in
Chapter 1, there is a large time-lag in applications of mathe-
matics: the pure mathematics of one century may be the theoretical
physics of the next. Of course applications are important; but it
is no good taking too short-term a view of them.

1 want to give three instances of important applications of
modern mathematics. The first shows how linear algebra can be
used to solve certain kinds of problems in economics, and is about
as close as group theory gets to paying the rent. The second is a
recent application of group theory to the study of fundamental
particles in physics. The third is a brand new theory of discon-
tinuous processes, which is based on brand new mathematics.
This might eventually have important applications to biology and
medicine; it has already been successfully used to study the pro-
pagation of nerve-impulses,

This last theory is so new that much of it is pure speculation
and most of it has yet to be worked out. If I am to beat the time-
lag effect I have to indulge in a little crystal-gazing. But if one
recalls that the calculus is largely a study of continuous processes,
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and notes that the calculus has for two centuries been the basic
tooloftheoreticalwknce;ifonemﬁmthatthmisammen-
dous need for insight into discontinuous processes in physics,
chemistry, engineering, meteorology, biology, economics, socio-
logy, politics, geophysics, aerodynamics, . . ., then it should be
at least plausible that a theory of d:seonunuws processes has
considerable potential.

How to Maximize Profits

A certain factory manufactures two distinct products, ‘gadgets’
and “doofers’. In each case the product is first turned on a lathe,
and then has holes drilled in it. The times required for these
operations, the total time available per week, and the profit per
gadget or doofer are as tabulated:

machine gadget doofer | available time
lathe 3 5 15

drill 5 2 10

profit per unit 5 3

How can the manufacturer make the most profit?
Let us suppose that he makes x gadgets and y doofers every
week. Then time considerations yield conditions

Ix+5y <15 )
5x+2y <10 )
while of course
x>0 Q)
y=>0. @
His profit will be
S5x+3y. )

The problem is thus to maxiniize (5) subject to the system of in-
equalities (1)-(4).

We have no techniques for solving inequalities, so we draw a
graph. The points (x, y) which satisfy conditions (1)-(4) are those
lying in the shaded region of Figure 179. The last two conditions
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just tell us that x and y are positive; (1) says that (x, ) lies below
the line 3x+5y = 15; (2) that (x, y) lies to the left of the line
S5x+42y =10,

Figure 179

For a given profit p the line 5x+3y = p is as shown. As we
change p the line moves, but its slope stays the same. The further
the line moves to the right, the larger p becomes.

Our problem is to find the biggest value of p for which this line
passes through the shaded region, because the shaded region
represents the possible (x, y). This obviously occurs when the line
passes through the point 4 at one corner of the shaded region.

To find 4 we solve

5x+2y =10
3x+5y =15
which give
x=20/19 y=45/19,
The profit per week is then 5x+-3y, which is
1004135 _ 235
19 19°
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The factory should produce 45 doofers and 20 gadgets every 19
weeks in order to make the maximum profit.

Similar considerations apply to any business, or national
economy. However the number of products and machines will be
very large. The general problem will be to maximize a certain
linear combination of the unknowns, subject to a system of linear
inequalities. These inequalities determine a certain region in a
multidimensional space. It can be shown that

(i) this region is convex;
(ii) the maximum profit occurs, if it exists, at one of the
corners of the region.

The proof involves essential use of linear algebra. So does the
technique needed to find the corner at which the maximum occurs:
and with a lot of unknowns a computer is required.

To study a national economy in complete detail would involve
so many equations that even the fastest computer available could
not hope to handle them. Some simplifying assumptions must
then be made; with a consequent doubt as to the validity of the
results.

This technique, which is known as linear programming, is a
standard one of economics, and may be found in most textbooks
on mathematical economics.*

The Eightfold Way

At one time atomic theory was fairly simple. All atoms were
thought to be made up of three different kinds of fundamental
particle: protons, neutrons, and electrons. More penetrating
investigations revealed the existence of hosts of other fundamental
particles: neutrinos, pions, muons, and the like. But there was no
theory available to organize the various particles into a coberent
structure.

In 1964 it was discovered that group theory could be used to
provide such an organization. The following description of the
idea is of necessity highly compressed, so do not expect to be able
to follow more than a general outline.
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The basic technique involves representations of groups. Given
a group G we find its representations as follows: we look for a
vector space ¥ having some linear transformations which form a
group G’ isomorphic to G. This G’ (or more strictly the isomor-
phism) is said to be a representation of G.

Consider the example where G is the group with two elements
{1, r} such that r2 = I. If we take ¥ = R? we can consider a re-
flection T in some fixed line through the origin. If we let 7 be the
identity map, then {I, T} forms a group of linear transformations
of V. Furthermore T2 = I, 50 that G’ = {I, T} is isomorphic to G.

The dimension of the space V is, by abuse of language, referred
to as the dimension of the representation.

In quantum mechanics a -given object may exist in various
different energy states. In a hydrogen atom, consisting of a proton
and an electron, the electron may take energies belonging to a
certain infinite, but precisely determined, set of values. The elec~
tron can change state by absorbing or emitting photons to keep
the total energy constant.

There is a mathematical consequence of the laws of quantum
mechanics: the possible states of a physical object correspond
precisely to the representations of the symmetry group of the object.

For example, a single atom floating in empty space at a fixed
point P has complete rotational symmetry: its symmetry group is
the group O; of all rigid motions of 3-space that leave P fixed.
This group already is a group of linear transformations of 3-space,
because rigid motions are linear transformations, so it has a 3-
dimensional representation (which the physicists call the triplet
representation).

If now we turn on a magnetic field the symmetry is destroyed:
the direction of the field defines a line in 3-space, and the sym-
metry group is now the group O, of rotations keeping this line
fixed. It turns out that the triplet representation of O, splits up
into 3 different 1-dimensional representations of O,. In a spectro-
scope the single spectral line which occurs in the absence of a
magnetic field splits into 3 closely spaced lines when the field is
turned on. The energies can be calculated, and agree with experi-
ment.

This use of group theory is quite common in quantum mech-
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anics. It was used in 1938 to predict the existence, and various
properties, of pions. Pions were detected experimentally in 1947
and the predicted properties held good.

Among the known fundamental particles there are some which
are much more massive than the rest, known collectively as
baryons. They include the neutron n°, the proton n*, and more
esoteric particles denoted by A (lambda), E (xi), = (sigma), and
A (deita). Each particle has a certain mass, and an electric charge
which always comes in integer multiples of the basic unit of
charge, which is +1 for the proton and 0 for the neutron. (It is
~1 for the electron but this is not a baryon.)

There are other physical quantities associated with fundamental
particles, less intuitive than mass or charge. Among them are
Spin, isotopic spin, hypercharge, and strangeness.

The commonest baryons are eight in number, and comprise a
Z doublet, a T triplet, a A singlet and an n doublet. Their mass,
charge, isotopic spin (/) and hypercharge (Y) are as shown in
Figure 180.
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These can be organized in terms of the representations of a
certain group called SU,. The most natural representation of SU,
has dimension 8. If in fact the SU, symmetry in nature-is imper-
fect then the symmetry group reduces to a subgroup U,. The
original 8-dimensional representation splits into 4 parts, having
dimeasions 3, 2, 2, 1. These correspond exactly to the Z triplet,
the E and n doublets, and the A singlet.

Further, the observed values of Y, I, mass, and charge agree
with those predicted by the SU, theory. It is as if all the baryons
are really different states of one fundamental particle, which has
been perturbed into the eight different kinds by asymmetries in
nature.

The theory is known as the “eightfold way".

A crucial test was made. The next representation of SU, has
dimension 10. When restricted to U, it breaks up into 4 parts of
dimensions 4, 3, 2, 1. Nine known particles fitted: a A quadruplet,
a X triplet, and a E doublet (Figure 181). (The masses of the X3
and s differ from those in Figure 180 because we are looking at
different states.)
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The question mark indicates a missing particle. The theory
makes several predictions about this particle: it must have
charge —1, hypercharge —2, isotopic spin 0, and mass about
1700 MeV. As it happened, these were a highly unexpected
combination.

In February 1964, in a specially designed experiment, the
particle was found. It was dubbed the omega-minus (2~).

A theory based on abstract groups had correctly predicted the
existence of a hitherto unknown fundamental particle.?

Catastrophe Theory

It is not always true that continuous changes produce continuous
effects. To switch on a light you move the switch in a smooth
continuous path from the ‘off” to the ‘on’ position; but thereis a
point in between at which the light suddenly switches from *off®
to ‘on’. A continuous movement near the edge of a cliff can pro-
duce a discontinuous result if we fall off the edge.

Most of mathematics, and virtually all of physics, has until
recently concentrated on continuous changes. However René
Thom, one of the world’s outstanding mathematicians, has dis-
covered a profound theory of discontinuous changes, which be
calls catastrophes.®

The potential applications of such a theory are widespread and
important. Perhaps the most important is in the field of biology.
As an embryo develops it passes through many discontinuous
changes, as cells divide, limbs begin to form, nerves and bones and
muscles develop. An insight into these processes could lead to
enormous strides in biological understanding. Perhaps one day
we might be able to use this understanding in medicine, parti-
cularly as regards deformities in children.

Such applications, if they are possible, are many decades or
centuries away. But Thom’s theory is the only one which gives any
kind of insight into discontinuous processes. As such, it is worth
developing.

The subsequent discussion will be much facilitated if the reader
constructs, or at the very least imagines, a Zeeman Catastrophe
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Machine,* as shown in Figure 182. It consists of a pivoted disc, to
the edge of which are attached two equal lengths of elastic. One
is fixed at a point F, the other is free to move.

Figure 182

(Use a cardboard disc, and pin it to a wooden board with a
drawing pin. With a 5-cm diameter disc the point F should be
about 12 cm below the centre of the disc; the elastic should be
about 8 cm long and not too strong. A washer helps. Preferably
the elastic should be attached to the edge of the disc by some
device which can rotate freely.)

Experiment will reveal the existence of a diamond-shaped
region, roughly like PORS, with the following property: outside
the region, the disc can come to rest in only one position. Inside



Applications of Modern Mathematics 279

Furthermore, the disc can be made to jump suddenly from one
rest position to a completely different one by a continuous varia-
tion of the free end of elastic. For a movement as in Figure 183
the disc jumps when the path moves out of (but not when it moves
into) the diamond-shaped region PQRS.

Fgure 183

To see why this happens we analyse the energy in the elastic.
One can imagine the disc artificially forced to some non-equili-
brium position. When we let go, it twangs back to some position
of equilibrium. It does this in order to minimize the energy stored
in the elastic (more strictly to make the energy stationary, in &
sense which will be explained below).

Outside the region PQRS the energy curve looks like Figure
184, where 0 denotes the angle at which the disc is positioned.
There is a single minimum, and thus a single equilibrium position.

Inside PQRS the energy curve looks like Figure 185. This time
there are two minima, corresponding to different angles 6: this
gives two equilibrium positions.

In between the minima is a maximum: this does in fact cor-
respond to an equilibrium position, but an wnstable one. The
slight perturbation will cause the energy to ‘roll down the slope’
to a minimum. It is theoretically possible to balance a pin on its
point: but such a position is one of unstable equilibrium.
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Figure 184 Figure 185

When we follow the path shown in Figure 183 the energy
curve follows the sequence of changes of Figure 186.

WAVAW/
At

The disc starts off at one minimum, and because of continuity
conditions it stays in that minimum, all the while the minimum
remains in existence. When the minimum disappears, it cannot
remain in it: so it moves to the only one left. The disc is trying to
behave continuously, but it is forced to jump by circumstances
beyond its control.
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This behaviour can be seen more vividly if we draw a 3-dimen-
sional graph showing, for each position of the free end, the pos-
sible equilibria. The result, it can be proved, is Figure 187,

Figure 187

In this figure, the point P is shown, together with part of the
diamond-shaped region. The region itself has been turned round
for clarity. Over points inside the cusp-shaped line K there are
three possible equilibria: one on the top layer of the fold, one in
the middle, one below. The middle one is the unstable one. Over
a point outside K, there is just one layer of surface.

As we follow a path across X the disc tries to stay in the equili-
brium position corresponding to the top surface. However, when
we pass out of K, it ‘falls off the edge’ and the disc jumps.

Quantitatively we proceed as follows. We take a certain system
(a, b) of coordinates, with P at the origin. We also choose a
variable x, related to the equilibrium angle of the disc. For small
values of a, b, x the energy in the elastic, ¥, is

V = }x*+iax?*+bx.
To find the equilibria we want the stationary values of the energy.
These are the points where the graph of the energy is horizontal:
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maxima, minima, and ‘points of inflection’. These possibilities
are illustrated in Figure 188.

Figure 188

By using calculus it can be shown that the stationary values occur
av .
whenh =0,ie.
x3+ax+b=0.
If we plot the ‘graph’ of this equation by choosing particular
values of a, b and calculating x we get Figure 187.

René Thom studied a general situation of which the above is a
special case. He considered any dynamical system whose be-
haviour can be measured by variables

X, Y5200

and which is controlled by another set of variables

a,b,c,....
The variables x, y, z, , . . are the coordinates of a behaviour space,
and a, b, c, . . . are the coordinates of a control space. The be-
haviour of the system is governed by the potential, or energy, in the
system: we take a completely general potential

V=VkxJy2...,abc..)

subject only to conditions which allow us to apply the operations
of the calculus to V.

For fixed choices of g, b, ¢, . . . the system takes up equilibrium
positions corresponding to stationary values of V.

In the Zeeman machine, we have one dimension of behaviour
x, and two dimensions of control a, b: the potential ¥ is as given.
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Obviously we can obtain such a system for any choice of ¥, so
there are infinitely many different systems of this kind. However,
+a lot of these become the same if we make ‘ changes of coordinates’.
If in the Zeeman machine we change x to 2X then ¥ becomes

4X*+2aX+b
which is different from the old V. But if we knew all about the
new system we would know all about the old one: the change is
not a significant ope. The easiest way to weed out insignificant
variations is to look at the topological properties only.

All events in the physical world are controlled by 4 variables:
3 of space and 1 of time. So if we have physical applications in
mind we may often restrict ourselves to 4 dimensions of control.
(But it is not essential to do so.)

Thom then proved a wonderful theorem. With 4 dimensions of
control there are precisely 7 topologically distinct kinds of dis-
continuity which typically occur in such a dynamical system. Every
energy-minimizing physical discontinuity is typically one of 7 basic
types.

Thom listed these 7 types, which he called the elementary
catastrophes. They go like this:

name | potential ¥

fold 15 tax

cusp Ix*+3ax?+bx

swallowtail 3x%+3ax3+4bx2+ex
butterfly x5 +iaxt+3bx> +dex? +dx

hyperbolic umbilic | x*+y*+ax+by+cxy
elliptic umbilic x3—3xy*+ax+by+c(x*+y?)
parabolic umbilic | x2y+)y*+ax+by+ex?+dy>.

You can see from the list that there is no obvious pattern, no
obvious reason why these seven alone should occur. In fact the
proof of Thom’s theorem makes essential use of some very deep
results from multidimensional topology, analysis, and abstract
algebra - as I said, mathematics is a harmonious whole - and even
then the proof is very difficult.

The geometrical shapes of the elementary catastrophes are very
beautiful. Figure 189 shows a computer-drawn cross-section of
part of a parabolic umbilic.’
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You will observe that Zeeman’s machine corresponds to the
cusp catastrophe on Thom’s list. The same catastrophe illustrates
how the theory applies to problems in biology.

A living cell is a 3-dimensional blob of matter. For clarity, I'll
oversimplify and assume it is a 2-dimensional blob, which makes
the rictures easier to draw. Correspondingly we will assume the
cell lives in a control space of 2 dimensions.

We shall measure the behaviour of the cell by looking at the
concentration of some fixed chemical. (It might be sodium
chloride, it might be DNA: the principle is the same.) Since cells
may undergo discontinuous changes — and it is exactly these that
interest us — some catastrophe must be involved in the way the
chemical concentration depends on the controls. A possible mode
would be the cusp catastrophe.

As time passes, the chemical concentrations will gradually
“drift’; and we can represent this by moving the cell slowly through
the control space. Figure 190 shows four stages in the develop-
meat of the cell.

The position of the cell is shown in the lower half of the picture;
the folded surface represents its chemical state. In the final
picture there is a sharp line of discontinuity across the cell. The
points to the left of this discontinuity are those which passed to
the left of the fold point, and so have a high concentration of the
chemical: the points to the right have a low concentration.

The cell has, in fact, divided into two differeat cells, because
that is the only way that a sharp discontinuity in chemical con-
centrations can happen.

As I said, this is a crude and simplified model. Cell-division is
not quite this simple. But it is a discontinuous process of the kind
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Figure 190

considered by Thom, so we expect each stage in it to be governed
by one of the seven catastrophes.

This opens up a new kind of answer to the question, ‘Why do
cells divide?’. ‘Because topological properties of their chemical
state make it impossible for them not to divide.’

We glimpse a picture of the developing embryo: drifting
gradually through some incredibly folded surface of chemical
changes, dividing and subdividing; starting to form a limb here,
a nerve, muscle, or bone cell there. And every step in the process
occurs in just one of seven different ways.



Chapter 20 Foundations

An astronomer, a physicist, and a mathematician (it is said) were
holidaying in Scotland. Glancing from the train window, they
observed a black sheep in the middle of a field. ‘How interesting,’
observed the astronomer, ‘all Scottish sheep are black!’ To
which the physicist responded, ‘No, no! Some Scottish sheep are
black !’ The mathematician gazed heavenward in supplication, and
then intoned, ‘In Scotland there exists at least one field, containing
at least one sheep, at least one side of which is black.’

Mathematicians (when on their best behaviour) tend to caution.
A theorem ought to be true. The mathematician recalls the many
occasions on which the ‘obvious® has turned out to be wrong, and
shudders. In a subject where regular 17-gons can be constructed
but 19-gons cannot; where the sphere can be turned inside out;*
where there are the same number of rational numbers as integers,
who can blame him? And be decides that be must suspend judge-
ment until the theorem is proved.

Not all mathematicians display such caution, I must add, least
of all some of the world’s greatest (alive or dead).2 But even those
who do not are usually aware that they are on dangerous ground.
And it must be remarked that there is a great difference between
suspending judgement on a theorem, and ignoring it. Anyone
studying mathematics must be prepared to say ‘I don’t quite
follow that bit, but for the moment I'll pretend I do, and see
where it leads.” Often the difficulty is easier to understand in
retrospect. A pesson who insists on understanding every tiny step
before going on to the next is liable to concentrate so much on
looking at his feet that he fails to realize he is walking in the
wrong direction. It is always permissible to ignore difficulties the
first time round; this way you can check up on the basic plan of
attack. Then, if that seems all right, you can tidy up the details.

The time has now come to tidy up some details of our previous
work. A sheep that is black on one side and white on the other isa
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considerable rarity; and on the whole it matters little whether or
not a given sheep is exactly as it first appears. But mathematics
has a distressing tendency to pile deductions on top of each other
like a somewhat wobbly house of cards. Remove one card, and
the whole structure topples. Early in the American space-
programme, a rocket costing several millions of dollars had to be
blown up just after take off. A semicolon had been omitted from
the computer-tape controlling its guidance system. The more
complex the structure, the more disastrous a flaw can be.

At the turn of the century mathematicians began to have doubts
about the foundations of their subject. It is fashionable to talk
about ‘pyramidal’ organizations. Mathematics resembles a
pyramid stuck point downwards. Almost all of its results rest
ultimately on a small number of assumptions. It is only common
prudence to take a close look at those assumptions, and to make
them as solid a base as possible.

A Half-Black Sheep in the Family

Frege realized that an adequate treatment of the concept ‘num-
ber’ was totally lacking. We mentioned his attempts to put
numbers on a firm footing in Chapter 9. The keystone was the
way we split up sets into classes, such that all the members of a
given class were equinumerous. According to pragmatical attitude
B, ‘These classes behave like numbers, so I might as well say that
they are numbers.’

In fact we did not adopt this attitude, preferring to take the
existence of numbers as an axiom. This is fortunate, because
taking the set of all sets with a certain property is less innocuous
than it seems. Bertrand Russell pointed this out to Frege just as
Frege had completed his masterpiece.

Imagine a librarian in a large library. Among the books on the
shelves are certain catalogues: of poetry books, reference books,
mathematics books, outsize books, . . . . Some of these (such as
the catalogue of reference books) list themselves, others (poetry)
do not. In order to clarify this situation the librarian decides to
make a catalogue (call it C) of all the catalogues which do not list
themselves.
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The problem is: does catalogue C list itself ?

If it does, then it is listed in C, so does not list itself. If it does
not, then C is one of the catalogues which does not list itself, so
must be listed in C.

Remember the village barber?®

If this were just a paradox about librarians we would not be in
trouble: we could keep all references to librarians out of mathe-
matics. But a set is much the same as a catalogue, and the things
it lists are its members.

The set-theoretic version is this: let B be the set of all sets which
are not members of themselves. Is B a member of itself, or not?
The reasoning is just as for catalogues: whichever we assume, we
deduce the other.

So set theory as used by Frege is inconsistent. No worse fate
could befall any theory.

The only remedy is to abandon Frege’s naive set theory and
seek a replacement that is not inconsistent. In the naive theory we
have allowed ourselves too much licence, and reaped the reward
of the over-indulgent.

Two Remedies

In order to circumvent the Russell paradox, we have to change
the rules so that the argument fails. But our new rules mustn’t be
100 restrictive, or we may throw out the mathematical baby with
the paradoxical bathwater.

There are at least two places in the argument where the logic
is a tiny bit dubious.

In the first place, our freedom to construct sets may be too
great. If B were not a set, then ‘membership’ of B might not
make sense, so the argument could not be pushed through.

In the second, we may have placed undue reliance upon proof
by contradiction. If not-not-p and p are different then proof by
contradiction breaks down: all we have proved is that B is not a
member of B and not not a member of B, and the latter does not
contradict the former.
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Advocates of the second school of thought - the so-called
intuitionists ~ were particularly vocal in the 1930s. Their remedy
is rather drastic: if we throw away proof by contradiction we lose
an awful lot of mathematics. The intuitionists took great pains to
reconstruct the: major portions of mathematics without using
proof by contradiction, and it is amazing how much can be
saved; but nonetheless changes occur. All functions are continu-
ous, for example.

The intuitionist argument runs along these lines: it is at first
sight plausible that not-not-p is the same as p, or equivalently that
exactly one of

4 not-p
is true. Certainly if p refers only to a finite number of objects this
should be the case, for we can in principle check p for each object.
When we finish, either every object satisfies p, so p is true; or one
of them doesn’t and p is false, so not-p is true.

But if p refers to infinitely many objects, this option is no
longer open. We may check as many objects as we like, and find
P true - but we have no way of knowing whether, for an object
still unchecked, p is false. Unless we can find a proof of p (or of
not-p) that works for all objects, we are stuck. Now conceivably,
p might be true of each object, but for a different reason in each
case - a sort of infinite coincidence. If this happens, we certainly
can’t disprove p. But we can’t prove p either, because we can’t
write out an infinitely long proof.

Consider, for example, the Goldbach conjecture: every even
number greater than 2 is a sum of two primes. This has never been
proved, or disproved. If you try it out for various even numbers it
seems to work :

4=242 18 =5+13
6=3+3 20=17+13
8=345 2 =3+19
10 =3+7 24 =5+19
12=5+7 26 =3423

14 =3+11 28=5+23

16 =5+11 30 =7+23
On the other hand, no recognizable pattern occurs. It is certainly
possible that no pattern exists, and yet the conjecture may be true.
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This very possibility means that our confident assertion that
either p or not-p is true is metaphysics, not mathematics. It is based
on the assumption that infinitely many objects behave like finitely
many objects. And we have seen enough examples of the curious
behaviour of the infinite (especially Chapter 9) for this to be a
questionable assumption.

If the assumption is wrong, then the Russell paradox would
just be one of those theorems that we can neither prove nor dis-
prove. Of course, just what the word ‘wrong’ may mean in this
context is a matter for investigation - it’s not clear that it has any
useful meaning.

The intuitionist is happy with statements like ‘Every even
number less than 101°° is a sum of two primes’, and he agrees
that these are either true or false. But the statement ‘Every even
number is a sum of two primes,’ might be neither true, nor false:
it falls into a new category of truth — dubious.

Apparently less drastic is the idea that we should restrict our
freedom to form sets. In one alternative set theory* there are two
distinct types of set-like object. First there are classes; these have
elements, and behave much like the naive sets. But a class is not
necessarily able to be a member of another class. Those classes
which can be members are the sets.

This means that a definition of a class in the form

C={x‘xhasproperty?}
must be interpreted as: C is the class of all sets x which have
property P. If x has property P we cannot deduce that x € C
unless we know that x is a set.

In the Russell paradox, the argument tries to show that if
B¢ B then B has the property which defines elements of B
(namely, not being elements of themselves) and so lies in B. In our
new set theory, this cannot be deduced unless Bis a set.

Now we turn the Russell paradox on its head. All it does is
prove (by contradiction) that B is not a set. For if B is a set the
paradox works - contradiction.

Those classes which are not sets are called proper classes. The
Russell paradox proves they exist. On the other hand, we don’t
know of any sets.

The only way to make sure that sets exist is to lay down axioms
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which say they do. Simple axioms, obviously necessary to any set
theory, say that @ is a set, or that the union of two sets is a set, or
that the intersection of two sets is a set. Thus we build up an
axiomatic set theory.

Frege’s naive set theory was modelled on the behaviour of
collections of real objects. We don’t expect the real world to
contradict itself (a belief which may prove to be as unfounded as
many another cherished tenet of humanity) and so we expect
Frege’s set theory to be consistent. It isn’t, but in the final analysis
this is because it has strayed beyond the realms of reality.

Axiomatic set theory, however, never gets anywhere near the
real world. Before it can be an acceptable basis for mathematics,
it should be demonstrated to be consistent. There is no re-
assurance on this point from the physical world. A proof of
consistency is needed.

The Hilbert Programme

First we must decide which methods of proof are to be allowed in
giving the demonstration of consistency. Clearly we cannot use
methods of proof whose own consistency is open to doubt.

David Hilbert, who was the first to consider the question, felt
that a satisfactory proof must be one whose techniques can be
completely specified in such a way that, 50 to speak, a computer
could carry them out. There must be no vagueness; each step
must be perfectly clear, each contingency accounted for.

Hilbert also realized that for the purpose of the proof we must
ignore any meaning that could be attached to the mathematical
symbols. We should think of mathematics as a game played with
symbols on paper, according to certain fixed rules. Rules saying,
for example, that the combination of symbols 1+1 may be re-
placed by the symbol 2. If we can show that however the game is
played we cannot produce the combination of symbols

0+£0
by a legal sequence of moves; and if we can prove this in a finite,
constructive fashion; then we will have a proof of consistency.

If the combination 0 # 0 did occur we could interpret the moves
of the game as a proof that 0 # 0, so axiomatic set theory would
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be inconsistent. On the other hand, if axiomatic set theory is in-
consistent there is a proof that 0 # 0, which gives a sequence of
moves in the game.

As well as suggesting this, Hilbert laid down a complete pro-
gramme for carrying out the proof. In order to give mathematics
as sound a logical foundation as could be desired, it was only
necessary to carry out the programme.

Hilbert was also interested in another problem: whether, in
principle, every problem can be solved. This is connected with the
intuitionist belief that some cannot. Hilbert’s programme in-
cluded an answer to this, too: he wished to show that there existed
a definite procedure whereby one could decide in advance whether
or not a problem could be solved. He was convinced that this was
possible.

Hilbert at this time ‘was the acknowledged leader of the
mathematical world. But a young man, Kurt Godel, who had
trained as an engineer, was convinced that Hilbert was wrong. In
1930 he sent for publication a paper® which left the Hilbert
programme in ruins. Another great mathematician, Von
Neumann, was giving a series of lectures on the Hilbert pro-
gramme. But when he read Godel’s paper he cancelled what
remained of the course, in order to lecture on Gédel’s work.

Godel proved two things:

(i) If axiomatic set theory is consistent, there exist theorems
which can neither be proved nor disproved.

(i) There is no constructive procedure which will prove
axiomatic set theory to be consistent.

The first result shows that problems are not always soluble,
even in principle; the second wrecks Hilbert’s programme for
proving consistency. It is said that when Hilbert heard of Godel’s
work he was ‘very angry”.

Later developments have shown the wreck to be greater than
even Godel imagined. Any axiomatic system sufficiently extensive
to allow the formulation of arithmetic will suffer the same de-
fects. It is not any particular axiomatization that is at fault, but
arithmetic itself?!
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Gidel Numbers

This and the next section provide an outline proof of Gddel’s
theorem. Anyone who wishes to omit these two sections may do
so without losing the thread.

We begin with a simple question: how many arithmetical
formulae are there? (By “arithmetical formula’ I mean any com-
bmationofthesymbols +, = X, ":‘9(a ), =,0, 132,334) 5’6’7s
8,9.)

Obviously there are infinitely many. But bearing in mind
Chapter 9, we ask: which infinity? Countable or uncountable?
In fact, the set of formulae is countable. There exists a bijection
between it and the set N of whole numbers.

We begin by ‘coding’ the symbols:

+ - x +()=0123 456 7 8 9
1 2 3 4 567 891011 12 13 14 15 16 17
Now, to code a string of symbols, such as
4+7=11

we form the number

212 31 515 77 11°.13°
where 2,3,5,7,11,13,... is the sequence of primes, and the
powers 12, 1, 15, 7,9, 9 are the codes of the symbols 4, +, 7, =,
1, 1 of the string.

In this way we can associate with each string a code, which will
be a whole number.

Because of the uniqueness of prime factorization, we can re-
construct a string from its code. Thus, if the code is 720, we
factorize

720 = 2¢.32.5%,
The symbols whose codes are 4, 2, 1 are -, —, +; 30 720 is the
code of the string
+ -+
(not a very meaningful string, but a string nevertheless.)

For more complicated strings, the numbers get very large. But
every string has a code, and different strings have different codes.
By arranging the strings in order of size of their codes, we can see
that the set of strings is countable,
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In axiomatic set theory we have more symbols: €, U, N, {,},
and also symbols for ‘variables’ x, , z, . . . . But the same argu-
ment applies: code the symbols, then code strings using prime
numbers. So in axiomatic set theory the set of strings is also
countable,

Proof of Gidel’s Theorems

For this section we shall be working in two different systems: an
axiomatic set theory &, and ordinary arithmetic, &f. The system
& will be a formalization of arithmetic. Inside & we will have
certain symbols, from which we construct strings; the axioms of
& tell us what we are allowed to do to the strings.

‘We assume that & is so arranged that the arithmetical symbols
are used in & with their usual meanings; so that the string 242 =
4 has two interpretations: (i) a string in &, devoid of any mean-
ing, (ii) a formula in arithmetic. Further, if a sequence of per-
missible changes of strings in & leads us (say) to the string
242 =4, ‘then the corresponding sequence of arithmetical
formulae will be a proof, in&f, that 242 = 4.

In &, certain strings will involve a single numerical variable x.
Examples are the strings

x+1=1+x

x(x—1) = xx—x (4]
x+x =43.

We are particularly interested in this kind of string: to save
breath we call a string involving the numerical variable x a sign.

If a is a sign and ¢ is a positive number, we can form a new
string [a:¢] by substituting ¢ for x in a. (Here, of course, ? is
thought of as a string of symbols 0, 1, 2, 3, . . . .) For example, if
a is the sign x+1 = 1+4x and ¢ = 31, then [a:31] is the string
3141 =1+31.

Every sign has a G6del number. We arrange these in order, and
let

R(n)
be the nth sign. Then every sign is equal to some R(n) for suitable
choice of 1.
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Now define a set K of whole numbers (in &) by: ne€ K if and
only if [R(n):n) is not provablein &.

For example, to see if 3 € K we find R(3): say it is the string
x+4 = 0. Substituting 3 for x we get the string 3+4 = 0. If this
isnot provablein &, then3 e K.

Now the formula x € K in &f can be formalized in &, and gives
some string S in . Now S involves a single numerical variable,
so is a sign. For any particular number » the string [S:n] is a
formal version of the arithmetical statement n € K.

Since S is a sign we have S = R(g) for some ¢g. Now we show

that the string
[R(g):q] o
is not provable in &, but that at the same time
not-{R(g):q] @
is also not provablein &.

If (1) can be proved in & thea its interpretation in <f is true, &
being a formalization of . So g € K. But by the definition of K,
it follows that (1) is not provable in &.

If (2) is provable in &, then not(g € K) is true in . So g ¢ K,
whence it is false that [R(g):q] is not provable in &; so [R(g):q]
is provable in &. Assuming & consisteat, it follows that (2) is not
provablein &.

The string [R(g):g] (which is a perfectly definite string in &)
therefore gives a theorem which can neither be proved nor dis-
proved in &. This proves Godel’s first theorem.

Disentangling, you will find that [R(g):q] can be interpreted as

asserting its own unprovability. It says, almost, ‘This theorem is
unprovable,® which is very like, ‘This sentence is false.” However,
*This theorem is unprovable,’ cannot be formalized in &, which
is why we have to hop around from & to of and back again.
Now we can prove Godel’s second theorem. Let T be the string
[R(q):q], which we have seen asserts its own unprovability. Let W
be any formula in & which asserts the consistency of &. We
want to show that W cannot be proved in &.

Godel’s first theorem reads “if & is consistent, then T is not
provable in &°. We can express thisin &. * & is consistent” is our
formula W; ‘T is not provable in &’ is just T itself, because T’
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asserts its own unprovability. So Godel’s first theorem, written in
&, takes the form

W implies T.
If we could prove W in &, then this would enable us to prove T.
But we know that T cannot be proved; hence W cannot. Since W
asserts the consistency of &, it is not possible to prove S con-
sistent within &, This is Godel’s second theorem.

Undecidability

In full detail (which involves specifying carefully what is meant by
a ‘constructive procedure’) Godel’s theorems can be given a com-
pletely watertight proof.® Although (2) deals the death-blow to
the Hilbert programme, it is (1) that is more interesting. It shows
that in ordinary arithmetic there exist statements P such that
neither P nor not-P can be proved. Such statements are said to
be undecidable.

In a way, this is a partial vindication of intuitionism; but only
if one equates ‘provable’ with ‘true’. And the proof of Godel’s
theorem applies equally well to intuitionist mathematics.

Several questions raised by Hilbert have gone the same way as
the problem of arithmetical consistency. A Diophantine equation
is a polynomial equation, such as

x34y? =233
for which we seek solutions in integers. Hilbert asked for a
method of testing a given Diophantine equation, to see whether
it had a solution. Matijasevi¢ (following earlier work by Davis,
Putnam, and Robinson) has recently proved’ that no such
method exists: whether or not a given Diophantine equation has
solutions may be undecidable.

An amazing corollary of Matijasevié’s proof is that there
exists a polynomial

P(xy, X2, . . oy X23)
in 23 variables, whose positive values for integer values of the
variables run through exactly all prime numbers. A ‘formula for
primes’, no less!® In principle, it would be possible to write the
polynomial down explicitly; but in practice it is too complicated
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to do more than give a procedure whereby it could be written
down. And it is unlikely to be of any use in the theory of prime
numbers.*

In Chapter 9 we mentioned this problem: is the cardinal ¢ of
the real numbers the next cardinal after §o ? This is the Continuum
hypothesis. Hilbert asked whether it was true or false (although
Cantor was the first to ask the question). Cohen’s answer,® in
1963, was *Yes and no’. It is independent of the other axioms of
set theory. You can add an axiom saying that the Continuum
hypothesis is true, and you will not make set theory inconsistent
(assuming it was consistent to start with!); or you can add an
axiom saying that it is false, and again no inconsistency will
arise. This is a twentieth-century version of non-Euclidean
geometry : by denying the Continuum hypothesis we can produce
non-Cantorian set theories.

Epilogue

Perhaps it should have been clear from the start that the Hilbert
programme could not sueceed. It is too like trying to lift oneself
by one’s bootstraps. Can any knowledge be true in an absolute
sense? But the value of Godel’s work is that it goes beyond mere
philosophical speculation: it proves the impossibility of an
arithmetical proof of the consistency of arithmetic.

This does not mean that we cannot find other ways of proving
arithmetic consistent. Gentzen'® has indeed proved this; but his
methods involve transfinite induction - 1 won’t go into what that
is — and of course the consistency of that is open to doubt.

So the foundations of mathematics remain wobbly, despite all
efforts to consolidate them. Perhaps one day somebody will find
an inescapable contradiction, and the whole subject will collapse.
But even then, there would be indefatigable mathematicians
pottering around in the ruins, tinkering with the works, and
trying to resurrect what they could.

For the truth is that intuition will always prevail over mere

* But see Appendix, p. 30S.



298 Concepts of Modern Mathematics

logic. If the theorems fit together properly, if they yield insight
and wonder, no one is going to throw them away just because of
a few logical quibbles. There is always the feeling that the logic
can be changed; we would prefer not to change the theorems.

Gauss called mathematics ‘the queen of the sciences’. I prefer
to think of it as an emperor. And though it may yet transpire
that the emperor has no clothes, he is still better dressed than his
courtiers.
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‘There is probably no other science which
presents such different appearances to one
who cultivates it and one who does not, as
mathematics. To [the latter] it is ancient,
venerable, and complete; a body of dry,
irrefutabl big ing. To
the mathematician, on the other hand, his
science is yet in the purple bloom of

vigorous youth’'-C. H. Chapman, in 1892

The reader who has persevered this far must by now be a culti-
vator of mathematics, even if he was not at the start of the en-
deavour. He will therefore appreciate that, while it may be
ancient and venerable, it is far from complete; that not all of it is
dry; and that its reasoning has not always been either unam-
biguous or irrefutable — nor is yet. Purple bloom and youthful
vigour, however, may appear a trifle far-fetched; in any case,
what was true in 1892 may not be today. My remark in Chapter 1
that most ‘modern mathematics’, as taught in schools, is over a
century old, points to one possibility: if this truly were modern
mathematics, one might conclude that the well had run dry.
Fortunately it has not: the present century has witnessed the most
rapid and broad advances of the subject in the history of humanity,
as indeed it has in many other subjects.

So youthful is the vigour, indeed, that it has caused what might
have been a minor embarrassment to your humble narrator. The
first twenty chapters of this book were written in 19734 and
published in 1975. It is now 1980. Even by 1977 several dis-
coveries had been made which necessitated changes to those
chapters. It would have been possible to do this by rewriting parts
of them but it seemed better to make a virtue out of necessity, let
what I wrote stand except for a few pointers toward this chapter,
and add an appendix to update the information and, at the same
time, demonstrate how rapidly mathematics is evolving.

It is neither feasible nor desirable to survey everything that has
bhappened in those few years; just to catalogue the results would
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take a good many books the size of this one. My selection is
strongly conditioned by links with the material discussed above.
It cannot, therefore, be truly representative of the great variety of
activities in which mathematicians indulge.

In Chapter 11 I unguardedly remarked, of the four-colour
problem, that . . . it would be a pity if it were solved . . .’: you
might think that a problem that was posed in 1852 and unsolved
in 1975 would have the decency to remain unsolved a little longer.
It would seem, however, that the Principle of Universal Cussed-
ness of Things (known by other, less flattering names) is in
operation, for in mid 1976 a solution to the problem was an-
nounced. Although it is not quite certain that the proof is in the
bag, for technical reasons that I shall mention, it looks as if it is.
The next section of this chapter tells the story to date. Following
that, we review recent work on polynomial formulae for primes,
which among other things disproves something I said in Chapter
20. Finally, I want to expand on a point touched upon in Chapter
14; namely, the use of topology to study dynamical systems. Here
some topological gadgets known as strange attractors have sud-
denly begun to manifest themselves in ecology, geology, and fluid
dynamics, as a phenomenon that the ecologists have christened
chaos. One result is that the line between deterministic and ran-
dom behaviour cannot be drawn as clearly as has hitherto been
widely assumed.

The Four-Colour Theorem

In Chapter 11 we had a four-colour problem and a five-colour
theorem. On 22 July 1972 two mathematicians at the University
of Illinois, Kenneth Appel and Wolfgang Haken, announced a
proof! that every map on the plane can be coloured with four
colours, resolving the long-standing question. The snag with their
proof is that it involves an immense amount of computing time —
they used about 1200 hours, but a check might be performed in
300 on a big machine - and a single error might destroy the proof
completely. Contrary to popular opinion, computers do make
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errors even when their programmers do not. The problems raised
by this are as much philosophical as technical (is a proof checked
by a human any more likely to be accurate than one checked by
computer?) and look like causing some problems in future. At
the present moment, the Appel-Haken proof has not been fully
checked by an independent program, although those parts that
have been checked appear to be error-free. Philosophy apart,
most mathematicians would probably agree that the theorem is
proved provided such a check is carried out in full. The philo-
sophical problem is an interesting one, however, because it
involves the difference between a logical proof and a satisfactory
one. I shall return to this once we’ve seen how it goes.

The proof of the five-colour theorem given in Chapter 11 is
essentially due to A. B. Kempe (1879). Let us recall it briefly. It
makes use of a reduction process (which involves a number of
different cases) to show that the given map may be coloured pro-
vided another map, with fewer regions, can be coloured. By
applying this process over and over again we must, since the
number of regions decreases at each stage, eventually reach a map
with as many or fewer regions than we have colours. This map is
manifestly colourable, therefore reversing the reduction step by
step, so was the previous one, and the one before that, and . . . the
original.

Kempe went further than we have done (arguing for five
colours): he added an argument purporting to prove that four
would suffice (involving extra cases in the reduction). The mathe-
maticians of the time seem to have accepted this ‘proof” without a
qualm, until in 1890 P. J. Heawood pointed out the mistake. The
proof we have given above, as Heawood also pointed out, re-
mains valid for five-colourability.

The basic strategy of our proof for five colours and the Appel-
Haken proof - and even Kempe’s fallacious attempt - is the same.
(Kempe simply failed to carry it out correctly.) For our present
purposes this emerges more clearly if we recast our proof in a
slightly different form. The idea is to argue by contradiction and
suppose that there does exist a map requiring more than five
colours. There is then such a map having the least possible num-
ber of regions (in trade jargon, a minimal criminal), say M. By
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definition, every map with fewer regions than M can be coloured
in five colours.

Next we show that M must contain at least one of a list of con-
figurations, namely Figures 109, 110, 111, 112. Then we consider
one of these configurations and concoct an argument of the follow-
ing kind. From any map M which contains it, we show how to de-
rive another map M’ with fewer regions. This M’ is so con-
structed that, if it is five-colourable, so is M. Thus the burden of
colourability shifts from M to the simpler map M’. (In our proof
on pages 169-73, M’ is obtained from M by merging regions, as
indicated.) We concoct such arguments (which may differ in
detail) for each configuration in our list.

‘What happens when we apply these ideas to a minimal criminal?
By definition, a minimal criminal has a very strong property:
every map with fewer regions is five-colourable. It follows that,
whichever configuration on our list is encountered, the smaller
map M’ is five-colourable. However, the general argument which
shifted the burden to M’ now tells us that M irself is five-
colourable. This argument works provided one of our listed
configurations is known to occur in M, but we have cunningly
chosen our list so that every map contains at least one con-
figuration! Hence M contains at least one and we apply the argu-
ment to that one. Therefore M is five-colourable.

‘This, however, contradicts the criminality of M!

More carefully: we started by assuming M was not five-
colourable; now we have proved that it is. It follows, just as on
p. 116, that our initial assumption must be wrong. That is, M is
not a minimal criminal: so no minimal criminals exist. Hence no
criminals at all exist. (Big crime cannot exist without small crime,
or, more precisely, if any criminals exist then the smallest one is
also minimal.) Therefore every map is five-colourable.

To grasp this argument ‘in a nutshell’ we introduce two new
terms. We say that a set of configurations is unavoidable if every
map contains at least one configuration in the set. A configura-
tion is reducible if it cannot be contained in a minimal criminal.
The proof works by constructing an unavoidabile set of reducible

configurations.
We can try the same thing on the four-colour problem (noting
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that the condition for reducibility is now that the configuration is
not contained in any minimal criminal for four-colourability); and
this is what Kempe tried to do. He made a mistake (in a compli-
cated argument about rearranging colours) when considering
Figure 112. Appel and Haken reasoned that the way to get round
this is to replace Kempe’s four possibilities by a different un-
avoidable set, by throwing away the configuration that caused
him trouble. It is of course necessary to add several new con-
figurations, because the possibilities increase rapidly as the size of
the configurations considered grows. Having found a new un-
avoidable set, it is tested for reducibility. If this doesn’t work, we
throw away the bad sets and try again with even more. You can see
the danger: the attempted proof works by chasing its own tail and
succeeds only if it catches it! Now Appel and Haken developed
such a good ‘feel’ for the configurations needed that they man-
aged to come up with something that did catch its own tail (at
least, if the computations are correct). Unfortunately, their un-
avoidable set contained 1936 configurations! It has now been re-
duced to 1877, but it is doubtful if it can be made very much
smaller.

So good was their ‘feel’ that, after using the computer for
several years to explore the problem, they actually wrote down the
unavoidable set by hand. The computer comes in to check un-
avoidability and, more seriously, reducibility. There is a lot of
interesting mathematics involved in how this is done, but I won't
go into details. For moderately large configurations, reducibility
takes a lot of checking, and it is here that the computer time and
the danger of error are greatest.

One might expect that the solution of such a notorious un-
solved problem would have caused a great stir in the mathe-
matical world. To some extent it did, but the excitement was
mostly short-lived and the overall impact a good deal less than
that of solutions to other problems of mathematical importance
but less familiar to the man in the street. I don’t mean to belittle
Appel and Haken’s achievement, which is a remarkable tour de
Jforce whose influence will be felt for a long time, but I think the
description is a fairly objective one. There are several reasons why
the solution was a bit of a damp squib.
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The most immediate is that, while the four-colour problem is
something that every mathematician knows about, and may
occasionally make a half-hearted attempt to solve, it is not some-
thing that many of them worry about. The reason is that, as far
as the mainstream of mathematics is concerned, it doesn’t seem
to matter much whether the answer is four or five. Nothing of
importance hinges upon it. It is not clear that, if you know the
answer, you can do anything with it. There are no powerful tech-
niques, of general use in mathematics, that would be advanced if
the result were known. Colourability is a complete side issue in
topology, let alone the rest of mathematics. Having said that, I
should add that this does not diminish the difficulty of solving the
problem: there can be few mathematicians who would not have
been immensely pleased with themselves had they been able to
match Appel and Haken’s achievement.

Secondly, there was the problem of whether the computerized
proof was correct. It’s hard to get excited about something when
you are not certain it has been done! For many years past there
have been rumoured solutions,-all with mistakes, and this breeds
a certain scepticism.

The third reason, and in many ways the most serious, was the
nature of the proof. In a sense which I shall have to elucidate, it
doesn’t give a satisfactory explanation why the theorem is true.
This is partly because the proof is so long that it is hard to grasp
(including the computer calculations, impossible!), but mostly
because it is so apparently structureless. The answer appears as a
kind of monstrous coincidence. Why is there an unavoidable set
of reducible configurations? The best answer at the present fime
is: there just is. The proof: here it is, see for yourself. The mathe-
matician’s search for hidden structure, his pattern-binding urge, is
frustrated.

You see, there is more to mathematics than just logical rigour.
The proof of Pythagoras’ theorem in Chapter 2 Figure 1 is not
even logically rigorous without a lot of extra work on making
precise the concepts involved; but it is immediately convincing.
The truth of the result — the necessity for it to be true — impresses
itself upon the mind. Likewise, the proof of the five-colour theorem
can be grasped in its entirety. Even very long proofs, or whole
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areas of mathematics, can be grasped in this way. A satisfactory
proof is one that can communicate how a theorem sits within the
overall scheme of things. It is probably true that Appel and
Haken have such a grasp of the four-colour problem - I doubt
they could have constructed their unavoidable set without it - but
their proof does not communicate this understanding to anyone
else.

There are at least two possibilities here. One is that a different,
more structured proof will now be found. Often this happens: it
is much easier to prove a theorem once you know it is true. (For
a start, the effort you put in is less likely to be wasted.) The other,
which Appel and Haken themselves consider more likely, is that
the nature of the proof reflects the nature of the problem. It isa
monstrous coincidence. They further conjecture that the future
will reveal a good many more theorems of the same type.

Now, whether the four-colour theorem itself is of this type I am
unsure, though it certainly looks that way, but it is extremely likely
that Appel and Haken are right when they suggest that such
theorems exist. We have seen that in Hilbert’s day the prevailing
belief among mathematicians was that every true theorem must
have a proof, and how nalve Godel showed this belief to be. It is
probably just as nalve to imagine that every provable theorem
has an intellectually satisfying proof.

Polynomials and primes

In Chapter 20 I mentioned Matijasevi¢’s prime-representing poly-
nomial, saying: ‘In principle, it would be possible to write the
polynomial down explicitly; but in practice it is too complicated
to do more than give a procedure whereby it could be written
down. And it is unlikely to be of any use in the theory of prime
numbers.’ Strictly, this statement remains true of the actual poly-
nomial found by Matijasevi¢, but the impression it gives (which
is what I thought at the time) is that any prime-representing poly-
nomial would be too complicated to write down explicitly.
1was wrong.
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I was also arguably wrong on the utility of such formulae in the
theory of primes - though it remains true that it is seldom the best
starting point, when discussing primes, to use a polynomial
formula - in the sense that there are properties of primes which
follow from such formulae and were not known previously.

To whet your appetite, here is a polynomial formula for primes,
due to J. P. Jones, D. Sato, H. Wada, and D. Wiens2. The set of
primes is identical with the set of positive values of the polynomial

k+2){1—[wz+h+]j—qF —[(gk+2g+k+1)-(h+)+h—2F
—Rn4p+g+z—eP—[16(k + 1k +2)-(r+ 1 + 12
—[e*-(e+20a+1)*+1—0*P—[(@* ~1)y* +1—x2]* —[16r2y*(a*
—1)+1—-?P —[((a+u*(? —a))* —1)- (n+4dy)* + 1 —(x+ cu)*P
=+ 1+ o—yP-(@-DP2+1—-m*P—(ai+ k+1-1—iP—[p
+ l(@a—n—1) + &2an + 2a—n*—2n—2)—mP —[gq + Wa—p—1)
+ s(z;ti + 2a—p*—2p—2)—xP —[z + pl(a—p) + tQap—p*—1)
—pm;

as thevariables a,b,c,d,e,f,9,h.i,jk,1,mn,0,p,q,r,5,t,u,0,w,x.y,2 range
over the natural numbers 0,1,2,3, . . .

The inventors point out: ‘Note the apparent paradox. The
polynomial factorizes!” Namely, it has factors k+2 and the
monster inside the curly brackets. How, then, can it represent
primes, which don’t factorize?

The secret is that the monster expression is of the form 1—M,
where M is a sum of squares; hence M > 0 no matter what values
we substitute for the variables. We construct: M to have the
property

k+2 is prime if and only if M(k, other variables) = 0. (})
Then (k+2X1—M) is positive if and only if 1—M is positive,
which entails M = 0. Thus the factorization becomes (k+2)(1)
where k2 is prime by (1). Demise of paradox.

I haven’t the space to give the proof? and in any case this is
extremely technical. Some applications and further discussion are
to be found in a beautiful paper by M. Davis, Yu.Matijasevié, and
J. Robinson.?
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Chaos

One rapidly growing branch of modern mathematics, the potential
applications of which are only just beginning to be realized, is the
topological theory of dynamical systems, whose guiding force is
the American mathematician Stephen Smale (mentioned in
Chapter 14 in connection with the Poincaré conjecture). The
mathematical part of René Thom’s ‘catastrophe theory’ is
essentially a part of dynamical systems theory: indeed, the start-
ing point for Thom’s ideas is dynamical systems theory, even if his
applications and speculations are not.

Thom’s ‘elementary catastrophes’ (Chapter 19) are the simplest
examples of what dynamical systems theorists call bifurcation, but
there are more complicated types, which Thom dubs * generalized
catastrophes’. Some of these have recently turned up in connec-
tion with population models and there are signs that more appli-
cations are on the way. Therefore, partly to demonstrate that the
elementary catastrophes are not the only thing around and partly
for their intrinsic interest, I would like to discuss the ideas at some
length.

Consider a (idealized) population of rabbits. If at time 7 we
have x rabbits, then at time ¢+ 1 we have 5x rabbits. Starting with
100 rabbits, how many do we have at time T? The pattern is pretty
clear:

at ¢ = 0 we have 100 rabbits,

at ¢ = 1 we have 5.100 = 500 rabbits,

at ¢ = 2we have 5.5.100 = 2500 rabbits,
at? = 3wehave 5.5.5.100 = 12500 rabbits,

at?=TwehaveS...5.100 = 100.57 rabbits.

‘This is the famed exponential growth often observed in populations
(from bacteria to humans). In all cases it becomes unrealistic for
large T: the universe isn’t big enough. For our rabbits, for ex-
ample, a rough estimate* shows that after 114 generations the
total volume of rabbit exceeds that of the observable universe. Of
course the formula breaks down far sooner : the number of rabbits
begins to outstrip the food supply and the birthrate drops.
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Instead of exponential growth, the numbers start to flatten out
(saturation) or even to decline.
Now we can express the rule that led to exponential growth as
follows. Let x, be the number of rabbits at time 7. Then
Xo = 100
and
Xe41 = 5x,.
‘This last equation is called a recurrence relation, because it ex-
presses the value at time ¢+ 1 in terms of that at previous time .

To take account of saturation effects, ecologists have intro-
duced a variety of modifications to this equation. In all of them
the idea is to reduce the growth rate as x, becomes large. A
favourite approach leads to the equation

X4y = kx(1—x,).
Here we choose to measure population x, in units making
0 < x, < 1. Then k is a constant and
0<k<4,
because k¥ > 4 makes it possible to have x, ., > 1 when x, = 05,
and we have chosen our units to rule this out.

The constant k gives a measure of the ‘unrestrained’ birthrate,
but the factor 1—x, leads to a cut-off in growth as x, nears 1.
This, too, is a recurrence relation, but a nonlinear one, and it does
not have any nice formula for the solution x, in terms of ¢. To
begin to understand it, we can try calculating some numerical
values. A useful way to represent the results is to draw a time-
series graph, plotting x, against 7. Figure 191 (a and b) shows
several such graphs for various values of k.

‘We observe that for k = 0-9999, the population rapidly dies out.
For k = 1-5 it settles down steadily to a value which, on the graph,
seems to be close to 0-33. For k = 25 it again settles down, but
oscillates on the way. For k = 3-05 it settles down into a pattern
of steady oscillation between about 0-5 and 0-7. For k = 3-5 there
is a similar, less steady, oscillation, with a smaller variation occur-
ring, in cycles of length 4. At k = 3-565 the oscillations are much
wilder, even more so at k = 3-7, while by &k = 4 all trace of
pattern seems to have vanished (Figure 191c).

Readers who have access to a pocket calculator (the simplest
kind will suffice) are encouraged to secrete themselves in a corner
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Figure 191a,b, ¢

somewhere and work out values of x, for longer ranges of ¢, with
different starting points and different values of k. They will find
that Figure 191 is representative of the general behaviour of this
recurrence relation. The wild behaviour of the later cases, with
k near 4, continues indefinitely: the system never seems to settle
down to any steady behaviour at all. This is the ecologist’s chaos.

Now experiment on pocket calculators is all very well, but it
neither proves that this sort of behaviour will occur nor does it
explain why. It is here that the dynamical systems approach makes
itself felt.

We are in fact dealing with what topologists call a discrete
dynamical system - as opposed to a continuous one — and this
simplifies the exposition while making the name more obscure,
for we may define a discrete dynamical system as a continuous
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function f:X — X where X is a topological space. Put this way, all
we have done is introduce a fancy name for something we already
know about. But the change of name introduces a change of em-
phasis, because what we are interested in is what happens if we do f
repeatedly. Roughly, f is how the system moves in one unit of
time and we want to deduce its behaviour after many units of time.

For instance - and this is perhaps too simple an example to be
entirely representative - suppose that X is a circular disc and fis
‘rotate by 1 degree’. Then performing / » times in succession rotates
the disc by a series of 1-degree clicks through a total angle of n
degrees. You can think of this process as a kind of discrete ana-
logue of a continuous rotation which at time ¢ has rotated the disc
through an angle of ¢ degrees.

In general we define the iterates /™ of fby

SO = ()

1@ = UM,
and so on. Then the ‘path’ followed by a point x of X is the
sequence of points

x, £, SO, fO), . . ., SO, ...

This sequence of points is called the orbit of x. To find out where
x goes to after a long period of time we follow along the orbit and
attempt to describe the way it jumps areund in the space.

Some rather special but interesting things can happen. The
most striking is if x is a fixed poins, that is,

f(x) = x.
For a rotating disc as above, the only fixed point is the centre of
the disc. For k = 1-5 in our nonlinear recurrence relation, x = §
is a fixed point, since 1-5 x§ x(1—4) = §.

Central to the discussion that follows is a related notion, the
periodic point. This is a point x which returns to its initial position
after some number, n, of iterations of f, and hence thereafter
repeats the same sequence of moves in a cycle of length a. In
symbols, x is periodic with period n if

19 = x.
This is equivalent to being a fixed point of /™, of course.

For example, with our rotating disc, every point x is periodic
with period 360, because f(3°) rotates through 360 degrees,
bringing everything full circle. This is decidedly unusual and
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‘most” discrete dynamical systems have periodic points occurring
less often!

The orbit of a periodic point (of period n) is a set of n points
(fewer if some smaller f™)(x) = x, as can occur: the difference is
immaterial for present purposes). It is called an attractor if the
orbits of all points sufficiently close to it approach it more and
more as time passes, and a repellor if they move further away. (The
precise notions require more careful definition, but the examples
that follow make it clear what is involved.) The importance of a
periodic attractor is that all points near it behave in approxi-
mately periodic fashion, so that their behaviour can be described
to high accuracy for arbitrarily long periods of time: we ‘know
what they will do in the future’. Repellors have just the opposite
significance : we rapidly lose track of any nearby points not actually
on the periodic orbit. However, the two tend to be associated
and it is methematically important to consider both.

‘We now have most of the language needed to investigate our
ecological population model. To set it up as a dynamical system
let X be the unit interval
: X={xeR0<x<1}
and define

[X= X, f(x)=kx(1—x).
This links up with our earlier recurrence relation as follows:
under iteration,
Xy =1"(xo).
So the behaviour of x, under iteration is given by its oroit under f.

The topological analysis® proceeds by examining the graph of f

and its iterates. In general, the graph of fhas the following shape:

44— fixed point

Figure 192
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The fixed points of f can be read off as the values of x for which
the graph of / meets the diagonal line y = x, as shown in the
figure. Further, there is a vivid graphical method for iterating f,
which I will illustrate as we go.

First suppose £ < 1. Then the graph of f never rises above the
diagonal and the only fixed point is 0. Iterates of a given x, can
be found by drawing a *staircase’ which bounces off the diagonal
as shown. (The bounce transfers the y-value f(x) to the x-axis,
veady to apply fto it again.)

~ |

ax X%

Figure 193

Clearly, whatever starting point x, we take, the orbit rapidly
homes in along the staircase to the origin, which is therefore an
attractor, indeed the only attractor. Its basin of attraction — the set
of points that home into it - is the whole of X. This explains why,
for k < 1, the population ‘dies out’: compare Figure 191 with
k = 0-9999.

If 1 <k <2, then a new fixed point appears and it is an
attractor. The origin becomes a repellor.

Fgure 194
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Further, the orbit approaches the attractor in a steady way,
getting closer and closer but not oscillating around it. This com-
pares with k = 1-5 in Figure 191. (We have already seen that
x = }is afixed point in this case.)

For 2 < k < 3 the picture is similar, except that the *staircase’
becomes a spider’s web, spiralling around the intersection point.

repellor

\

Figure 195

The fixed point remains an attractor but now the approach to it
oscillates from side to side. This is just what happens in Figure
191,k = 2:5.

For k > 3, however, the spider’s web spirals outwards, away
from the intersection point. The fixed point becomes a repellor
and the other fixed point at the origin remains a repellor, too.

Figure 196
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(By using calculus we can see why this happens. The curve
y=3x(1-x)
crosses the diagonal line
y=x
at x = 2/3. At this point its gradient is given by

dy
d.x36x 1,

which means that it crosses the diagonal at right angles. For
k < 3 the angle is less, for k > 3 it is more. This difference in the
angle determines the direction of spiral.)

It follows that the system does not, in general, settle down
towards a fixed point. Where does it go?

To find out, we look at the second iterate £\, A simple cal-
culation gives

FB0) = f( () = k(kx( —x)N1 —kx(1—x))
= kix—(k?+k3)x?+2k3x3 —k3x*,

Figure 197a shows the graph of /(2 for three values of k: slightly
less than 3, equal to 3, and just greater than 3.

taar ‘sttractor
‘stvractor!
. kA K k3 1 k3

Figure 197a

Weseethmj‘”hasasinsleﬁxedpoint for k < 3, and three fixed
points for k > 3. Further, when k < 3 the fixed. point is an
attractor; for k > 3 the one in the middie becomes a repellor and
the other two become attractors.

In other words, as k passes through 3 the original fixed point
attractor splits into three pieces: a fixed point repellor and a
periodic attractor of period 2. (Compare Figure 191 withk = 3-05.
A spider’s web diagram for this effect is shown in Figure 197b.)
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rod
point

Figure 197

This phenomenon is known as bifurcation, to capture the idea of
the attractor *splitting’. (One dynamical systems theorist insists
the word should be ‘furcation’, since the splitting is not always ~
as here - into two bits.) We can illustrate this effect by drawing a
new type of diagram: this graphs the values of x corresponding to
periodic points against k, as follows:

Figure 198

We shall call this a bifurcation diagram, to distinguish it from the
graphs of f or its iterates. We show attractors as heavy lines,
repellors as dotted lines (and later leave out the repellors to
simplify the pictures).

As k increases further, the new periodic points also become
repellors, by a similar process, but now occurring for ). The
bifurcation diagram becomes:
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Figure 199

By the time we reach k& = 3-57 (approximately) this process has
occurred infinitely often!

k-357
Figure 200

What happens next? I will stop drawing explanatory pictures,
since these start to get confusing and would take too much space;
but Figure 200 makes it plausible that something unusual will
occur. What we actually get, appearing simultaneously, are:
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() An attractor of period three.

(b) Periodic repellors of all periods, all coexisting at the same
time.

The result is that not all points settle down towards a steady
behaviour : some of them lead to apparently random fluctuations
as they are repelled from one repellor after another. This is the
‘chaos’ discovered by the ecologists® and hinted at in Figure 191
for k > 3-7. It is not quite as chaotic as one might suppose. For
example, we can calculate? the numbers of periodic points of any
given period (even though they are nearly all repellors). Whea
k = 3-832, we have

1 fixed point (other than 0),

3 points of period dividing 2,

4 points of period dividing 3,

7 points of period dividing 4 (4 of period 4, 3 of period 2),

11 points of period dividing 5,

18 points of period dividing 6 (11 of period 6, 4 of period 3, 3 of

period 2),
and so on, where the numbers in the left hand column are obtained
by adding together the previous two, as for Fibonacci’s series.®
This result was obtained by the dynamical systems people, not by
the ecologists!

However, up at k = 4 the chaos is more extreme. There are no
periodic attractors at all. The whole unit interval becomes a
strange attractor, and orbits jump around inside it in apparently
random fashion (see Figure 191c). It doesn’t just look random:: it
is possible to study the *statistical mechanics’ of the system and
prove that it has exactly the statistical properties that one would
find in a suitable random gystem.

What do I mean by ‘random’ here? It’s a tricky question to
answer, because the very phenomenon just discussed shows that it
is not as simple an idea as might be imagined. ‘Random’ means
that no obvious structure exists, but that ‘on average’ we can say
various things, such as how often the values occur in a given
range. But in the past, ‘random” has carried the connotation of
‘indeterminate’, that is, a system is deterministic if it follows
exactly some regular law, random if not.

However, here we have found a deterministic system (it obeys
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the formula x, ;. , = kx,(1—x,) exactly) whose behaviour is more
sensibly described as random! In fact, if you were just presented
with a list of iterates of some starting value and not fold the
formula, you would never guess that there was one. Thus the line
between deterministic and random behaviour is no longer so clear-
cut.

This carries implications for supposedly ‘random’ natural
phenomena. Are they really random? For that matter, is this now
a sensible question to ask? If not, what is?

Strange attractors and chaos do not just occur for this par-
ticular system. In a reasonable sense, they are the rule rather than
the exception in dynamical systems; further, as the number of
variables increases, the phenomena can become still more peculiar.
There is a growing body of evidence that turbulence in fluid flow
may be the manifestation of a strange attractor. Likewise, the
fluctuations in the earth’s magnetic field, including sudden

itches of direction of magnetization, may be traced to the same
source. The types of equation studied so assiduously by econo-
mists, who seem to be under the impression that these behave
tamely, can actually exhibit chaotic effects of arbitrarily nasty
kind. What the precise implications of all this will be for science,
1 cannot imagine; but it is quite clear that chaos, in this strictly
technical sense, will increasingly make its presence felt.

Real mathematics

T’d like to end on a fairly serious note. In the present volume I
have attempted to give some flavour of what mathematicians do
and how they think about it. As far as possible I have tried not to
water down the subject matter: I think it is reasonable to try to
include quite advanced topics in a book of this nature, and I have
found that readers generally seem to appreciate being given some
inkling of what goes on in the higher realms of today’s mathe-
matics, even though this may occasion some difficulties of com-
prehension every so often. It has always seemed to me that the
non-specialist is capable of grasping more of the spirit of a sub-
ject than is commonly imagined. Popular science magazines do
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not shy away from the abstruse complexity of elementary particle
physics or molecular biology, and I can see no reason to shy away
from comparable mathematical complexities.

Nonetheless, a popularization of a subject is not the real thing.
The biggest danger with a popularization is that an insensitive
reader may mistake the spirit for the substance. Topology, de-
scribed as ‘rubber-sheet geometry’ and illustrated by a few strik-
ing examples, can reveal broad new vistas to a suitably ‘attuned
mind. On the other hand it can, if interpreted too literally and
narrowly, look like the silliest nonsense imaginable. Stretching
and bending indeed! What conceivable use can that be? Holes in
doughnuts! Combing hairy balls! Two-dimensional creatures
living on twisted bands! How utterly ridiculous. !

Popular books or articles always have to slide over what, to the
professional, is perhaps the most important part of all of his
subject; the hard, technical grind. Yes: the research worker
usually works in a fashion which is far from logical, leaping to
conclusions, leaving odd problems to be taken care of later,
arguing by analogy, and making wild and unsubstantiated guesses.
Yes: the rigorous, technical argument is usually filled in later.
Yes: the intuitive ideas behind proofs are the true source of in-
spiration. Nonetheless, the technical grind is not just an after-
thought: it is an absolutely essential part of the process. Without it,
mathematics would collapse of its own weight. Without a firm
framework of technique, and without the constraints imposed by
rigour, the mathematician’s intuition would lose its sharp edge,
become dull and woolly, and fade into decadence.

Much scientific® methodology (and, if only in this technical
sense, mathematics is far more akin to the sciences than it can
ever be to the arts) has been developed to overcome fatal flaws in
the human psyche, of which the worst is a willingness to believe
something on too little evidence, simply because it would be nice
if it were true. This is where mathematical rigour came from:
particularly in the nineteenth century, attempts to dispense with
it and argue by physical analogy or ill-founded principles derived
from past habit came sadly to grief. Because scientific discoveries
are so well founded, it has become possible to build on them.
Newton remarked (and he was not being modest!) ‘If I have seen
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further than others, it is because I have stood on the shoulders of
giants’. In too many non-sciences, the aim seems more to be to
stand on their feet.

The problem with the hard technical grind is that there is no
way to appreciate it except by doing it. Unlike the general flavour
and philosophy of the subject, it resists any attempt at paraphrase.
All I can do, therefore, is ask you to recognize that there is
another side to the subject from that presented above, and in
particular that apparent frivolity may just be a way of rendering
palatable the difficulties. Mathematicians and scientists habitually
give complicated concepts simple names, or dress them up in
whimsical imagery, as an aid to comprehension. This should not
be confused with the use of jargon to obscure a basically simple
idea - or one that evaporates completely if analysed too closely.
‘Homotopy group’ may sound like jargon but it is a relatively
simple phrase for a complicated technical idea and much modern
mathematics would not be possible without it.

The proper statement of the  Hairy Ball Theorem is that there
is no continuous function £:52 — S2? which is homotopic to the
identity but has no fixed point. Here S? is the two-dimensional
sphere. To appreciate the technicalities of this statement involves
a lot of preparatory work on continuity, topological spaces, fixed
points, homotopy, and the like. To prove it involves a lot of
algebraic topological technique.1® Unless you have gone through
all of this detail, it is not even clear that the Hairy Ball Theorem
says anything mathematical at all. On the other hand, it is a
tremendous help in grasping this mass of detail if you bear in
mind that what the theorem says is that a hairy ball cannot be
combed smooth! To do mathematics in this area, you need to
understand both ways of thinking about the theorem and the con-
nection between them and how to switch from one to the other
to the greatest benefit.

Nor is this a lot of fuss over nothing. To the technician, the
Hairy Ball Theorem is a key step in the development of methods
whose practical implications include very powerful results on the
existence of solutions to differential equations. You won’t get
that aspect just by thinking about combing the dog.

It is only my personal opinion, but I think that one of the worst
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offences committed by *modern maths’ in schools was to lose sight
of this relation between the intuitive concepts and the technicali-
ties. It may be very amusing to study topology at school, but
unless this is very carefully motivated and taught by someone who
understands where it fits in the Mathematical Scheme of Things,
it will all seem vague and pointless; it will lack a satisfying solid
core; it will be actually hard to comprehend because of this wool-
liness; and it may well put off able students, in the long run. But
between the stereotypes of ‘modern’ and ‘traditional’ mathe-
matics of school syllabuses lies the real thing, and the evidence
for this is the unbroken development of genuine modern mathe-
matics out of genuine traditional mathematics: they are both part
of the same whole. There are already signs of increasing attention
being paid to this middle ground and it is a tendency to be
welcomed. If, at the same time, we can get away from the alarm-
ing habit that has grown up of shying away from anything that is
the least bit difficult,!! then we will make some real progress.
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Chapter1 Mathematics in General

1. I am told that in Dutch exactly the opposite usage prevails: the
word now used in mathematics where we would use ‘set’ has for
centuries been translated as “collection’.
2. See W. Sierpinski, On the Congruence of Sets and Their Equiv-
alence by Finite Decomposition, Lucknow University Studies, 1954;
also E. Kasner and J. Newman, Mathematics and the Imagination,
Bell, 1949.
3. To solve a polynomial equation

a X +...+a;x+a, =0
by radicals we must find a formula for the roots in terms of the co-
efficients ay, a,, a, which uses only operations of addition, subtraction,
multiplication, division, and extraction of roots. An example would be
the standard solution of the quadratic equation

ax*+bx+c=0
given by
—b/(b*—4ac)
x--———z———-.
It has been proved that no such expression exists for the roots of the
general equation of degree S. The proof is by means of Galois Theory
and requires a good grounding in abstract algebra. For details see
Galois Theory, E. Artin, Notre Dame, 1959; Introduction to Field
Theory, 1. T. Adamson, Oliver & Boyd, 1964; or Galois Theory, lan
Stewart, Chapman & Hall 1973.

Chapter2 Motion without Movement

1. C. L. Dodgson, Euclid and His Modern Rivals, Macmillan, London,
1879, p. 48.

zmmmybefmmde.Cuori.‘mHmoryonmos
Arguments on Motion’, ical Monthly 22, 1915;
E.KasnerandJ. Newmn,Mathemaﬂaadthclanbu.Bdl.lm
and Russell, Mysticism and Logic.
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3. This statement should perhaps be expanded. Given three points
A, B, C (distinct and non-collinear) and three distances g, b, ¢, there is
at most one point distance a from A4, b from B, and ¢ from C. For the
circles of radius g, centre 4, and radius b, ceatre B meet in at most two
points: these are nor equidistant from C, so at most one of them is
distance ¢ from C. Since rigid motions do not change distances, it
follows that once we know what happeas to a triangle we know what

of circles as above we have spheres.
4. One way round this is to write transformations on the right, as
(X)T or XT. Then we can define
(NEF = (XE)F
and everything comes out in order: EF means ‘first E, then F°. This
takes a little getting used to (though there are precedents, such as
writing »! for factorials). Mathematicians often use this method.

Chapter3 Short Cuts in the Higher Arithmetic

1. Although nowadays we first meet complex numbers in the solution
of quadratic equations such as
x24+3=0
where the usual formula gives x = ++/—3, historically complex
numbers first attracted attention in the solution of cubic equations.
Tartaglia’s solution for the equation
X+px+q=0

= JE e )G-IE)

For the equation
x3—7x+6=0 ®
we have p = —7, ¢ = 6, which leads to

3 100), 3 10/
*= \/ (’3*’3_\/3)*\/ (”‘373)
where { = /1.
On the other hand, we can factorize (1) as
(x—1)}x—2)x+3)=0
so the solutions are x = 1, 2, or —3.
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To reconcile the two results, observe that if we assume 7 behaves like
& number we can work out the cube roots. For

3 3
(1+ 2') 1+£’+ﬁ+ u

V3 V3 W3
183,
-l
3 3
'3+3v3’
and similarly
P W )
V3 W3
Using these for the cube roots we get
u . u
X - l+73+l—%

-2

which is one of the roots. Where are the other two? These come from
different choices of cube roots: over the complex numbers, everything
has three cube roots.

So by using complex numbers we end up with a correct result about
real numbers, This is an impressive feat, which suggests that a study of
complex numbers could be useful.

2. This phrase seems to be confined to ‘modern maths® textbooks.

3. It’s no problem. We are always free to make our definitions as we
please, 30 long as we stick to them thereafter. In any case the notions
of multiplication or subtraction of whole numbers, or of negative
numbers, involve the same kind of method: forget where they came
from, operate by analogy, and then check that the answers make sense.

4. Not the same ‘congruent’ as Tor triangies. But the two ideas have
a certain amount in common: in each case one ignores differences of
a specified kind: multiples of a fixed integer, or transformation by a
rigid motion.

5. It is not hard to see that a number of the form 2*+1 is not prime
mless k is a power of 2. This is probably what led Fermat astray. Of all
the unproved statements made by Fermat, this is the only one known
to be false, and the only one about which he expressed doubt.

6. E. T. Bell, Men of Mathematics, vol. 1, Penguin Books, 1965, p. 73.

7. See Hardy and Wright, An Introduction to the Theory of Numbers,
Oxford University Press, 1962, Chapter 6.



Notes 325

8. Fermat’s ‘last theorem’ — 8o called because it is the last whose
status is unresolved - asserts that there are no solutions of the equation
X+yt =2z
in non-zero integers x, y, z, provided that # is an integer greater than 2,

For n= 2 there are an infinity of solutions, e.g. 32+42 = 52
[Addendum, 1994:] In June 1993 Andrew Wiles of Princeton University
announced a proof of Fermat's Last Theorem, deriving it from a special
case of the so-called Taniyama-Shimura conjecture. However, a tec|
flaw was subsequently found. At the start of 1994 the flaw was um'epau'ed
but toward the end ol‘ 1994hdw.1s and th‘l:neh"d T?ylor of Cambridge
leted the proof

J

Chapter4 The Language of Sets

1. The symbol is a stylized version of the Greek letter epsilon, the
initial letter of the word ‘element’. Many books (especially less recent
ones) just use an epsilon.

2. A. A. Milne, *Winnie-the-Pooh’, Chapter 7.

3. This-is Fermat's last theorem again. See note 8 to Chapter 3.

4. In some developments of arithmetic 0 is defined to be 9, 1 to be
{9}, 2 to be {0,{0}}, and so on. So it is not completely true that 0 and 8
are different. However, one certainly rhinks about them in different
ways, and this is what is important here.

5. The symbol ‘<’ is derived from ‘ <’, but is made curved as a
reminder that it applies to sets, not to numbers. Some books use ‘<"’
instead.

6. The derivation of N, R, and C is clear. The Z comes from the
German word Zahl (number). The Q, I think, is from ‘quotient’.
Sometimes P (for ‘positive’) is used instead of N.

7. Consider the set C = {{1,2},{3,4}}. Then 1 € {1,2} and {1,2} €
C, butl ¢C.

8. Sometimes referrred to as ‘cup’ and ‘cap’, which to my mind is
confusing, and about as much help as calling ‘=" ‘two parallel lines’,
If you want a mnemonic, try * Union’ and ‘i Ntersection’.

9. The only place I have seen membership tables in print is in ‘Venn
Vill They Ever Learn?’ by Frank Ellis, Manifold 6, 1970, p. 44.

10. Boolean algebra is of some use in the design of logic circuits for
computers (see e.g. Rutherford, Introduction to Lattice Theory, Oliver
& Boyd, 1965, pp. 31-40, 58-74). Apart from its connection with set
theory it has little relevance to the main body of mathematics. How-
ever, quite a deep theory exists. See P. R. Halmos, Lectures on
Boolean Algebras, Van Nostrand, 1963.

11. The game of ‘vish’ (short for ‘vicious circle’) is played by
selecting at random a word in the dictionary, choosing a word from its
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uennition, then choosing one from its definition, and so on - the object
being to retrieve the starting word in as few steps as possible.

12. The first satisfactory definition of an ordered pair was given by
Kuratowski in 1921. The difficulty is to avoid reference to the printed
form of the symbols “(a, 5)’. It will not do to say ‘a is the left-hand
element’ because ‘left’ is not a concept of set theory. The early philo-
sophers got themselves into a terrible tangle (see e.g. Russell, The
Principles of Mathematics, 1903) over this question. *Is the ordering a
property of a?’ No, it must depend on b as well, because the ordering
of, say, (1,2) and (3,1) are different. ‘Is it a property of 52° No, for the
same reason. ‘Is it a property of a and b?° No, because ‘a and b’ is the
same as ‘b and a’, 80 that (a,b) and (5,3) come out the same.

The difficulty is to remove the symmetry between a and b. The
philosophers were unabie to do this because they were confused over
the distinction between x and {x}. They wanted them to be the same.
However, once we realize that they should be different, any number of
paths are opea. For instance, we can define

(a.b) = {{a}, {a,b}}.
The asymmetry on the right is enough to ensure that (a,b) and (c,d) are
equal if and only if g = c and b = 4: this can be proved by elementary
set theory. Since this is the only important property of ordered pairs,
the definition is a suitable one. It is not one that is psychologically
appealing, however.

Chapter 5 What is a Function?

1. This usage conflicts with current grammar, which would separate
the word into ‘on to’. It must therefore be thought of as a technical
term in its own right if one is to preserve grammatical purity. I suspect
it was coined in the US.A.

2. A purely set-theoretical definition of ‘function’ can be given,
using the notion of ‘ordered pair’. It usually causes students consider-
able difficulty, because it is at first sight far removed from the idea of a
‘rule’, and because they have met only numerical functions, defined
by formulae.

The problem is to produce a single object f which ties each element x
of the domain to the corresponding f(x) in an unambiguous way. For
any particular x, the ordered pair

(*.f()
does this rather well: for exampie if we have the pair (7,24) we know
that f(7) = 24. To specify f over the whole domain D we can use the
set whose elemeats are all the pairs (x,f(x)) as x runs through D.
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If T is a target, all the elements f(x) lie in 7, so this set of ordered
pairs is a subset of DX T. By virtue of property (3) of functions
(p. 67), this subeet will satisfy two conditions:

(i) For every x € D there is some y € T such that (x,y) is in
the given subset.
(ii) If (x,) and (x,2) are in the subset, then y = z.
Condition (i) says that f(x) is defined for all x, while (ii) ensures

Now we can turn the process on end. Given two sets D and T we
define a function from D to T as a subset fof D x T, subject to conditions
(i) and (ii). If we are given x € D we find f(x) by (a) finding some
y with (%) ef(whichwecln;(o)by(i))md(b)ddninc

x) =y
which is unambiguous by (ii).

In other words, any ‘rule’ is tantamount to a set of ordered pairs.
This is not immediately obvious (it would be tragic if everything in the
world was) but, in the words of a well-known politician, ‘You know
it works.’

For further information consult Halmos, Naive Set Theory, Van
Nostrand, 1964, or Hamilton and Landin, Set Theory, Prentice Hall,
1961.

Chapter 6 The Beginnings of Abstract Algebra

1. See note 3 for Chapter 1.

2. See Rouse Ball, Mathematical Recreations and Essays, Macmillan,
1959, Chapter 12.

3. Lindemann proved his theorem in 1882, Sce Stewart, Galois
Theory, Chapman & Hall, 1973, p. 74.

4. Those readers who have not encountered complex numbers should
consult W. W. Sawyer, Mathematician's Delight, Penguin Books, 1943.

5. See de Bruijn, ‘A Solitaire Game and Its Relation to a Finite
Field’, Jc l of R ional Math ics 5, 1972, p. 133.

Chapter7 Symmetry: The Group Concept

1. See for example, Ledermann, Introduction to Group Theory, Oliver
& Boyd, 1973.

There is a paper by J. H. Conway with the titie ‘A Group of Order
8 315 553 613 086 720 000", Bulletin of the London Mathematical Society
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1, 1969, pp. 79-88. One could hardly define this group by a multiplica-
tion table! (It should not be thought that mathematicians spend their
time constructing larger and larger groups. The size of Conway’s group
is not really important, but it has several rather remarkable properties
which are.)

2. See Klein, Lectures on the Icosahedr d the Solution of Equati
of the Fifth Degree, Kegan Paul, 1913 (also available in Dover Books).

3. See Coxeter, Introduction to Geometry, New York, Wiley, 1969,
p. 278. This interesting book also has information about the 17 types
of plane symmetry (pp. 50-61, 413).

Chapter8 Axiomatics
1. In the real world, the points eventually get so close that one can
no longer distinguish them. But we can also check the matter alge-
braically. For simplicity consider a radial line, and suppose that I" has
radius d. Any point strictly inside I is distance e from the centre, where
e is strictly less than d. It follows that a point (say) distance §(e+d)
from the centre is still strictly inside I", but further out than distance e.
For
d—He+d) = Hd—e)>0,
He+d)—e = ¥{d—e)>0.
2. W. W. Sawyer, Prelude to Mathematics, Penguin Books, 1955,
p. 85.

Chapter9 Counting: Finite and Infinite

1. Apart from certain set-theoretic difficulties, mentioned in Chapter
20.

2. Not without a lot of hard work! See Hamilton and Landin, Set
Theory, Prentice Hall, 1961, pp. 133-238.

3. Birkhoff and MacLane, 4 Survey of Modern Algebra, Macmillan,
1963, p. 362.

Chapter 10 Topology

1. Assuming that all the materials have thickness, and that the
objects are solid, the types are as follows: 4, E, G, I are spheres; C,
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D, F tori; B, H double tori. If (as in real life) 4, D, E are hollow, and
1is empty, there are more types: A, E, I are hollow spheres; G a solid
sphere; C, F solid tori; D a hollow torus; B, H solid double tori. With
more quibbles about details ~ bubbles in the bread, say ~ these are still

2. There is a science-fiction story by George Gamow (*The Heart on
the Other Side’, in The Expert Dreamers, edited by Frederik Pohl,
Gollancz, 1963) in which it is hypothesized that the real universe is non-
orientable. The hero is attempting to revolutionize the shoe-manufac-
turing industry, but runs into trouble whea all his bodily proteins tum
into mirror-image forms.

It is difficult to tell whether the physical universe is orientable. This
is because orientability is what topologists call a ‘global® property: to
discover it one must look at the whole space. ‘Locally’ a Mbius band
looks much like a cylinder: the properties close to any point are much
the same. We have little information about the globel structure of the
universe since it is so large. But if the astronomical observations
mentioned at the end of Chapter 8 are correct, it is probably nom-
orientable!

Chapter 11 The Power of Indirect Thinking
1. See Ore, The Four-Colowr Problem, Academic Press, 1967,

Chapter 12 Topotogical Invariants

1. See E. C. Zeeman, Introduction to Topology, Penguin Books,
forthcoming. I am grateful to Professor Zeeman for permission to
incorporate his ideas.

2. See papers by Ringel and Youngs, Proceedings of the National
Academy of Science (U.S.A.), 1968. Also A. T. White, Graphs, Gmup:
and Surfaces, North-Holland/American Elsevier,
and New York, 1973,

Chapter 13  Algebraic Topology

1. Another important class of algebraic invariants, the homology
groups, first saw light in rudimentary numerical form, as the so-called
Betti numbers.
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Chapter 14 Into Hyperspace

1. See Rourke and Sanderson, Piecewise Linear Topology, Springer,
1972

Chapter 15 Linear Algebra

1. There are any number of texts on linear algebra. There is a good,
gentle introduction in W. W. Sawyer, 4 Path to Modern Mathematics,
Penguin Books, 1966. From a practical viewpoint Fletcher, Linear
Algebra Through its Applications, Van Nostrand, 1973, has much to
recommend it.

2. W. W. Sawyer, Prelude to Mathematics, Penguin Books, 1955,
Chapter 8.

Chapter 16  Real Analysis

1. The suspiciously vague-sounding phrases ‘as small as we please’
and ‘sufficiently large’ are in fact quite precise. The first means that
given any positive number & we can make b,—/ smaller than &. To do
this we must make » larger than some number N, which may depend
on &. Thus a precise formulation of convergence runs: b, tends to the
limit /if for all £>0 there exists N such that if 1> N

lbn"'"<.'
(The modulus signs *| |* just make sure that the difference is positive.)
zmmmnmtoftemsahwwhwhunotmm

for convergent series — as the app dox de:
Itanbeshownhtfamtubmmmw
arrangement is allowable.

3. Asin note 1 the vagueness can be removed, and one gets the usual
technical definition: the function f is continuous at the point x if for
all £> 0 there exists 6> 0 such that

1fx)-fp)l<e
whenever
x—pl<d.

This may explain why studeats find analysis hard: the definition does
not resemble one’s intuitive idea that a continuous curve is one that is
“all in one piece’. The s-8 definition does lend itself to proving that a
given function, such as x2, or sin(x), is continuous: this is why it is
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used. No one has yet found a simpler approach to the question without
running into serious logical errors; but one should not imagine that the
current theory of continuity is the last word on the subject.

Chapter 17 The Theory of Probability

1. See W. Weaver, Lady Luck, Doubleday, 1963 and D. Huff, How
to Take a Chance, Penguin Books, 1977.

2. For example, consider the experiment of picking a random point
on the real line. The probability of picking any particular numbet,
such as 2, or z, is zero. But it is not impossible to pick 2, or &,

Chapter 18 Computers and Their Uses

l.ThaeisnlotofinteresﬁncmaterialinCompatmdeompm
tion (readings from Scientific American), Freeman, San Francisco.
2. For Fortran, try The Elements of Fortran Style by Kreitzberg and
Schneiderman, H. t Brace J itch, New York, 1972, or 4
Guide to Fortran Programming by McCracken, Wiley, New York, 1961,
For Algol see Wooldridge and Ratcliffe, An Introduction to Algol
Programming, English Universities Press, 1963.

Chapter 19 Applications of Modern Mathematics

1. For example. Allen, Math ical Analysis for Ec
Macmillan, 1970 and A. Battersby, Mathematics in Management,
Penguin Books, 1966.

2. For more details see the article ‘Mathematics in the Physical
Sciences’ by F. J. Dyson, in Mathematics in the Modern World (readings
from Scientific American) edited by Morris Kline, published by
Freeman, San Francisco, 1970.

3. Seec R. Thom, translated by D. Fowler, Structural Stability &
Morphogensis, Benjamin, Reading, Massachusetts, 1975. Since I wrote
this chapter several accessible references for Thom’s theory have ap-
peared. Among them are:

E. C. Zeeman, *Catastrophe Theory®, Scientific American 234, 1976,
pp. 65-83.
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L N. Stewart, ‘The Seven Elementary Catastrophes’, New Scientist
68,1975 pp., 447-54.

T. Poston and I. N. Stewart, ‘Taylor Expansions and Catastrophes’,
R h Notes in Math ics 7, Pitman Publishing, London, 1976.

T. Poston and L. N. Stewart, Catastrophe Theory and its Applications,
Pitman Publishing, London, 1978.

E. C. Zeeman, Catastrophe Theory: Selected Papers (1972-1977),
Addison-Wesley, Reading, Massachusetts, 1977.

4. See Poston and Woodcock, ‘ Zeeman'’s Catastrophe Machine’, Pro-
ceedings of the Cambridge Philosophical Society 14, 1973, pp. 2!7-26.

5. A large number of computer drawings of catastrophes appéar
in ‘A Geometrical Study of the Elementary Catastrophes’, Woodcock
and Poston, Lecture Notes in Mathematics 373, Springer, 1974,

Chapter20 Foundations

1. See A. Phillips, ‘Turning a Surface Inside Out’, Scient{fic American,
May 1966, pp. 112-20.

2. No names, no pack-drill!

3.. .. who shaves everyone who does not shave himself. Who shaves
the barber?

4. Namely, Von Neumann-Bernays-G8del set theory. See
Bernays and Fraenkel, Axiomatic Set Theory, North Holland, 1958,
p. 31

5. ‘On Formally Undecidable Propositions of Principia Mathematica
and Related Systems 1°, Momatshefte fiir Mathematik und Physik 38,
1931, pp. 173-98. See note 6.

6. Gidel's paper, together with a commentary, is available in trans-
lation under the original title (Meltzer and Braithwaite, published by
Oliver & Boyd, 1962).

7. See Matijasevié, ‘Enumerable Sets are Diophantine’, Soviet
Mathematics [ Doklady) 11, 1970, pp. 354-8; ‘ Diophantine Represeata-
tion of the Set o1 Prime Numbers®, ibid. 12, 1971, pp. 249-54.

8. Much effort has been expended on a search for formulae which
represent all primes, or, at least, take only prime values. (No polynomial
can represent the prime numbers and nothing else.) Thus we have
Fermat’s attempt with

2+
or Euler’s
n*—19n-1601
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which is prime for s =0, . . . , 79 (but composite for n = 80). There
are various ways of cheating by choosing an interpretation of the word
‘formula’. Many references are given by Dudley, ‘History of a Formula
for Primes’, American Mathematical Monthly 76, 1969, p. 23.

Such formulae are unlikely to be of use in the study of prime numbers
because they yield little real insight: a formula is usually more intract-
able than a simple non-formal definition. Matijasevi&’s results should
be thought of as evidence for the complexity of polynomials, rather
than simplicity of prime numbers.

See, in general, G. H. Hardy, Pure Mathematics, Cambridge Uni-
wversity Press, 1959 or H. Davenport, Higher Arithmetic, Humanities,
1968.

9. In fact, Gdel proved that assuming the truth of the Continuum
bypothesis will not lead to contradictions in set theory (The Consistency
of the Continuum Hypothesis, Princeton, New Jersey, 1940). Cohen
pmvedthnmmngiufdmyhkewmmmduoedmeonmmom
(Set Theory and the Conti Hypothesis, B nin).

10. See Mendelson, Introduction to " Mathematical Logic, Van
Nostrand, 1964.

Appeadix And still it moves . . .

1. See K. Appel and W. Haken, ‘Every Planar Map is Four Color-
able’, Bulletin of the American Mathematical Society 82, 1976, pp. 711~
12. The full proof is to appear in the Hllinois Journal of Mathematics.

2. See J. P. Jones, D. Sato, H. Wada, and D. Wiens, ‘ Diophantine
Representation of the Set of Prime Numbers®, American Mathematical
Monthly 83, 1976, pp. 449-64.

3. Namely M. Davis, Y. Matijasevit, and J. Robinson, ‘Hilbert’s
‘Tenth Problem. Diophantine Equations: Positive Aspects of a Negative
Solution’, in Proceedings of Symposia in Pure Math ics 28, Mathe-
matical Developments Arising from Hilbert Problems, American Mathe-
matical Society, 1976, pp. 323-78

4. According to M. V. iples of Cosmology and Gravitation,
Cambridge University Press, 1976,p 122, the known observable uni-
verse has diameter roughly 10%¢ m, hmoevolume-txlo"'m’ The
volume of a rabbit is at least 10-2 m>. The total volume of rabbits
equals that of the universe when
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100x 57 x 10-2 = 4x 107,
or
5T = 4x 107
Tlog§ = 79+log 4 (logs base 10)
T=114.
After at most 114 generations, we have more rabbit than universe.

SSeeJGuckenhemGOsterandAlpaktdn, The Dynamics of
Density-depend . Models’, to appear.

6. See T.-Y. Lund] A. Yorke, ‘Period Three Implies Chaos’,
American Mathematical Monthly 82, 1975, pp. 985-92.

7. See S. Smale and R. F. Williams, ‘The Qualitative Analysis of a
Difference Equation of Population Growth’, Journal of Mathematical
Biology 3, 1976, pp. 1-4.

8. The sequence 1,1,2,3,5,8, l3,21,...,inwhwhencbnnmberaﬁerdw
first two is the sum of the two, was introduced by Leonardo of
hsa(‘F‘bonm')mchZS,ma blem about the progeny of
rabbits. (The recurrence relation iS NOW X+, = X,+Xy+,; the reader
may reconstruct the problem from this.)

9. Iexclude a number of self-styled * sci * of recent vi
assumption of that term has greatly devalued it.

10. See for example C. R. F. Maunder, Algebraic Topology, Van
Nostrand, London, 1970, p. 131.

11. Such as the proposal to reverse the trend (current in the mid
1970s but abating at the time of writing) away from science: make
science easier! This ‘solution’ to the problem was based on the belief -
probably true - that students studied sci less b of the wide
variety of newer and easier subjects available. The fallacy should be
obvious: make science easier and the ‘scientists’ you produce don’t
know enough to be worthy of that name, hence are useless for all prac-
tical purposes. (Only someone who failed to appreciate my point about
the need for *hard, technical grind’ could imagine that it is possible to
dilute the content of a science course without severe ill-effects.) There
is an alternative solution that springs to mind, h : I won't suggest
it explicitly, but I urge the reader to consider Jacobi’s dictum: ‘always
invert’.

, whose
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x1
Ro, Ry, Xz, oe0
a<p

congruence (of integers)

to the modulus ¢

membership

the set whose members are ...

the set of all x such that ...

the empty set

inclusion of sets

the set of natural numbers

the set of integers

the set of rational numbers

the set of real numbers

the set of complex numbers

union

intersection

difference (of sets)

the universal set

set-theoretic complement

Cartesian product of sets

ordered pair

the Euclidean plane

factorial x (= x. (x—1) (x—2) ...32.1)

a function ffrom D to T

multiplication of functions

the identity function on D

the set of constructible numbers

3-14159..

thesetofmmeommttox
the set of polynomials in x

mmamnmp:

group operation

identity element of a group
inverse element to x
inverse element to x
infinite cardinals
inequality of cardinals
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a<p strict inequality of cardinals
c the cardinal of the set of real numbers
e 2:71828...
e the absolute value of x (= x if x20, —x if x<0)
F the number of faces in a map
4 the number of vertices in a map
E the number of edges in a map
209 the Buler characteristic of a surface
x(N) the Euler characteristic of a network
{1 the greatest integer not greater than . .,
P*q composition of paths
[p] the homotopy class of p
the fundamental group of §
R, R, R5,R* space of 3,45, dimensions
7n(S) the ath homotopy group of §
a b
(c d) matrix
X
(y column vector
P(E) probability of eveat E
Ge———
B the Russell set
K4 an axiomatic set theory
oS ordinary arithmetic
[aze] the result of substituting ¢ in @

R(n) the ath sign enumerated by Gddel numbers
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Ball-bearing computer, 257
Behaviour space, 282
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Bifurcation, 315

Bijection, 71, 104, 128
Binary notation, 255, 256
Binomial theorem, 78, 252

Cardinal, 135 ,

Cartesian product, 61
Catastrophe, 277- 85, 307
Chaos, 307-18

Circuit, 167

Classification of surfaces, 181-7
Closed, 97

Collapse, 165, 213
Commutative law, 76, 77
Complement, 56

Completeness axiom 234,235, 242
Complex number, 27, 28, 50, 89
Compose, 19

Composite number, 37
Computer, 255-68, 300, 303
Congruence, 8,33

Connected, 163

Consistent, 117
Constructible, 82

Contain, 48

Conunuons, 145, 236, 238, 307
Continuum h; ,297
Control space, 282

Convenz;n, 233
, 10!
Countable, 136

Cross-cap, 154-19

De Morgan's laws, 59
Deterministic, 317-18
Difference, 56
Dimension, 202, 222
Diophantine equation, 296
Disjoint, 131

Distance, 200
Distributive law, 77, 133
Domain, 67

Dual map, 184
Duplicating the cube, 81
Dynamical system 309

Economics 6,250, 270,273
Edge, 145

Eightfold way, 273

Element, 43

Elliptic geometry, 125
Empty set, 47
Equinumerous, 128

Euler characteristic, 177, 179
Euler-Poincaré formula, 213
Euler’s formula, 166, 176, 211
Event, 245

Face, 163
Fermat’s last theorem, 41, 302

Four-colour problem, 169, 300
Function, 3, 63, 67, 303
Fundamental group. 194, 195

Genus, 178

Geometry, 8-26, 59-62, 120-26
Gédel number, 293

Gadel's theorems, 292, 294
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Goldbach conjecture, 289
Graph theory, 160
Group, 1, 24, 95-112,270

Hairy-ball theorem, 156, 319-20

Handle, 178

Hilbert programme, 291

Hole, 145,174

Homotopy, 192, 193, 194, 213-14,
320

Hyperbolic geometry, 125
Hypercube, 204, 206
Hypersphere, 206

Identity, 74,100, 192
number, 89

Independent, 117, 118, 120, 248

Infinite series, 229

Infinity, 136, 229

Injection, 70

Integer, 27, 28, 50

Intersection, 51

Inverse, 74, 77, 80, 100, 192

Isomorphic, 107, 190

Iterate, 310

Klein bottle, 152, 178,208
Knot, 207
Knotted sphere, 209

Lagrange’s theorem, 103, 104
Law of large numbers, 253
Limit, 231, 233,

Line, 59,

Linear alsebn, 24,215-28,270
Linear pro; 2713
Linear

Loop, 167,192

Map, 163

Matrix, 223

Maximal dual tree, 185
Member, 43

Membershlp table, 54, 302
Mébius strip, 148-9, 177,178
Model, 118

Multiplication, 133

gramming,
transformation, 221, 227,274

Network, 159-69

Node, 160

Non-Cantorian set theory, 297
Non-Euclidean geometry, 125
Non-orientable, 152

Number, 27, 127, 287

Omega-minus, 277

One-to-one correspondence, 71
Onto, 70

Operation, 100, 101

Orbit, 310

Order, 103

Ordered pair, 61

Orientable, 152,178

Paradoxical dice,

Parallel axiom, llS 120-26
Path, 162, 189

Periodic point, 310, 317
Permutation, 105

Phase diagram, 209

Planar network, 162

Polynomial, 89, 305

Polytope, 202

Potential 282

Prime number, 37, 296, 305
Probability, 244-54
Probability space, 247
Program, 262 .
Projective plane, 153, 178.198
Proof, 117,291

Proof by contradiction, 116
Pythagoras’ theorem, 8, 200, 304

Quintic equation, 4, 109
Random, 317-18

Random walk, 253

Range, 67

Rational number, 27, 28, 50
Real number, 27, 28, 50
Recurrence relation. 308

Russell paradox, 287-8, 290
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Set theory, 2, 59, 246, 288
Sign, 294

Simultaneous equations, 215
Solid, 203, 222

Solitaire 91

Solution space, 222
Squaring the circle, 86

Strange altm:to:. 317
String, 293

Subfield, 82
Subgroup, 102
Subset, 48

Surface, 177

Surgery, 178, 181
Surjection, 70
Sylow’s theorem, 104
Symmetry, 95, 96, 274

Target, 67

Topological invariant, 178
Topologically equivalent, 146
Topological space, 146
Topology, 145-99, 213, 214
Torus, 146, 153, 174,178
Transcendental number, 141

Index

Transfinite number, 135
Transformation, 15, 68,219
Translation, 19

Tree, 184

Triangulable, 176, 177
Trigonometry, 225
Trisecting the angle, 86

Uncountable, 136
Undecidable, 296
Union, 50

Unity, 77
Universal set, 57
Utilities puzzle, 159

Vector space, 227, 274
Venn diagram, 53
Vertex, 160

Wallpaper patterns, 109
‘Wave equation, 5
Wilson’s theorem, 42
Winding number, 196
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Zeno's pa.mlou;, 13,16
Zero, 27,76
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CONCERNING THE SPIRITUAL IN ART, Wassily Kandinsky. Pioneering work
by father of abstract art. Thoughts on color theory, nature of art. Analysis of earlier
masters. 12 illustrations. 80pp. of text. 5% x 84. 23411-8

ANIMALS: 1,419 Copyright-Free lllnstruwns of Mammals, Bu'ds, Fish, Insects, etc.,
Jim Harter (ed) Clear wood ings present, in ly lifelike poses, over
1,000 species of animals. One of the most extensive pictorial sourcebooks of its kind.
Captions. Index. 284pp. 9 x 12. 23766-4

CELTIC ART: The Methods of Construction, George Bain. Simple geometric tech-

mqnafmmhnngncmuﬂmmmuspnh,de—typemnalsmmals,hmm,m
Over 500 ilk ions. 160pp. 9 x 12. (Available in U.S. only) 22923-8

AN ATLAS OF ANATOMY FOR ARTISTS, l-‘n(z Schider. Most '.horough refer-
ence work on art anatomy in the world. Hundreds of il selec

tions from works by Vesalius, Leonardo, Goya, Ingres, Michelangelo, others. 593
illustrations. 192pp. 7% x 10% 20241-0

CELTIC HAND STROKE-BY-STROKE (Irish Half-Uncial from “The Book of
Kells”): An Arthur Baker Calligraphy Manual, Arthur Baker. Complete guide to cre-
ating each letter of the alphabet in distinctive Celtic manner. Covers hand position,
strokes, pens, inks, paper, more. lllustrated. 48pp. 8% x 11. 24336-2

EASY OR]GAMLJohn Montroll. Charming collection of 32 projeds (hat, cup, pel-
ican, piano, swan, many more) specially designed for the novice origami hobbylst.

Clearly il insure that even beginning paper
crafters will achieve successful results. 48pp. 8% x ]I 27298-2

THE COMPLETE BOOK OF BIRDHOUSE CONSTRUC]']ON FOR WOOD-

'WORKERS, Scott D. Campbell. Detailed i ill ions, tables. Also data
on bird habitat and instinct patterns. Bibliography. 3 tables. 63 illustrations in 15 fig-
ures. 48pp. 5% x 84%. 24407-5

BLOOMINGDALE’S ILLUS'I‘RATED 1886 CATAI.DG Fashxons, Dry Goods
and H Bl Famed ly rare catalog
depicting about 1,700 produ lothing, h firearms, drygoods_;ewelry
more. Invaluable for dalmg identifying vintage items. Also, copyright-free graphi

for artists, designers. Co-published with Henry Ford Museum & Greenfield Vlllage
160pp. 8% x 11. 25780-0

HISTORIC COSTUME IN PICTURES, Braun & Schneider. Over 1,450 d
figures in clearly detailed engravings—from dawn of civilization to end of 19th cen-
tury. Captions. Many folk costumes. 256pp. 8% x 11%. 23150-X
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STICKLEY CRAFI’SMAN FURNITURE CATAI.DGS. Gumv Stickley and L. &

J- G. Stickley. B in two unlogxfmm 1910. 594
illustrations, including 277 photos, show settles, rockers, armchairs, re chairs,
bookcases, desks, tables. 183pp. 6% x 9%. 23838-5

AMERICAN LOCOMOTIVES IN HISTORIC PHOTOGRAPHS: 1858 to 1949,
Ron Ziel (ed.). Amwﬂemmofﬂﬁmzﬁcnlondydmdedoﬂiadphow_ylphs.

called “builder p j the
rise of steam | ive power in America. ‘ jon. Detailed cap
129pp. 9 x 12. 273938

AMERICA'S LIGHTHOUSES: An Illustrated History, Francis Ross Holland, Jr.
ywnmen.pmﬁuelydhmledﬁaﬁﬂcdmxveyofwerZOOAmenmnhghl

houses since 1716. History, d g d s, more. 240pp. 8x]0¥

25576-X
TOWARDSANEWARCHITECFURF.hCmbu-anmmngmey
founder of “I ional School.” Technical and aesthetic theories, views of industry, eco-

nomics, relation of form to function, “mass-production split” and much more. Profusely
illustrated. 320pp. 6% x 9%. (Available in USS. only.) 250237

HOW THE OTHER HALF LIVES, Jacob Riis. Famous journalistic record, expos-
ing poverty and degradation of New York slums around 1900, by major social
reformer. 100 striking and influential photographs. 233pp. 10 x 7%. 22012-5

FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS, William M. Harlow.
One of the handiest and most widely used identification aids. Fruit key covers 120
deciduous and evergreen species; twig key 160 deciduous species. Easily used. Over
300 photographs. 126pp. 5% x 84%. 205118

COMMON BIRD SONGS. Dr. Donaldj Borror. Songs of 60 most common uUs.
birds: in order of

asing ,l; ity. Up to 9 variati ofwngsofeachlpeou.w
Cassette and manual 999114
ORCHIDS AS HOUSE PLANTS, Reb Tyson Northen. Grow cattl

ysol and
many other kinds or\:hldHnawmdow,macase,orunderamﬁaallight.GSullw
trations. 148pp. 5% x 8%. 23261-1

MONSTER MAZES, Dave Phillips. Masterful mazes at four levels of difficulty.
Avoid deadly perils and evil creatures to find magical treasures. Solutions for all 32

exciting illustrated puzzles. 48pp. 8% x 11. 26005-4
MOZART'S DON GlOVANNl (DOVER OPERA LIBRETTO SERIES),
Wolfgang Amadeus Mozart. and d by Ellen H. Bleiler. Standard
Italian libretto, with lete English lation. C jent and thoroughl

portable—an ideal compc.mon for rudmg along with a recording or the performance
itself. Introduction. List of characters. Plot summary. 121pp. 5% x 84. 24944-1

TECHNICAL MANUAL AND DICTIONARY OF CLASSICAL BALLET, Gul
Grant. Defines, on steps, ts, poses and
page pictorial section. Basic book for student, viewer. l27pp 5% x 8%. 21843-0
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THE CLARINET AND CLARINET PLAYING, David Pino. Lively, comprehen-
sive work features suggestions about techni e, musicianship, and musical interpre-
huon,uwellugmdehnesfortndnng, your own reeds, and preparing for
public p look at clarinet history. “A godsend,”
The Clamul._]ounul of the lntemmonnl Clarinet Society. Appendixes. 7 illus. 320pp.
5% x 8%. 40270-3

HOLLYWOOD GLAMOR PORTRAITS, John Kobal (ed.). 145 photos from 1926-
49. Ha:low.Gable Bogart, Bacall; 94 stars in all. Full background on photographers,
technical aspects. 160pp. 8% x 114 233529
THE ANNOTATED CASEY AT THE BAT: A Collection of Ballads about the
Mighty Casey/Third, Revised Edition, Martin Gardner (ed.). Amusing sequels and
parodies of one of America’s best-loved poems: Casey’s Revenge, Why Casey
Whiffed, Casey’s Sister at the Bat, others. 256pp. 5% x 8%. 28598-7
THE RAVEN AND OTHER FAVORITE POEMS, Edgar Allan Poe. Over 40 of
the author’s most memorable poems: “The Bells,” “Ulalume,” “Israfel,” “To Helen,”
“The Conqueror Worm,” “Eldorado,” “Annabel Lee,” many more. Alphabetic lists of
titles and first lines. 64pp. 5% x 8%. 26685-0
PERSONAL MEMOIRS OF U. S. GRANT, Ulysses Simpson Grant. Intelligent,
deeply moving firsthand account of Civil War campaigns, considered by mny the
finest military memoirs ever written. Includes letters, historic photographs, maps and
more. 528pp. 6% x 9%. 28587-1

ANCIENT EGYPT[AN MATERIAIS AND INDUSTR.IES. A an and j
Harris. Fasci ly
ancient civilization’s vast re andthe that incorp ‘themlndnly
life, including the use of animal prod buildmg I
mdmcense,ﬁbemgﬂmdwm.ghnand its manufacture, materials used in the
mummification process, and much more. 544pp. 6'/s x 9'/.. (Available in U.S. only.)
40446-3
RUSSIAN STORIES/RUSSKIE RASSKAZY: A Dual-Language Book, edited by
Gleb Struve. Twelve tales by such masters as Chekhov, Tolstoy, Dostoevsky, Pushkin,
others. Excellent word-for-word English translations on facing pages, plus teaching
and study aids, Russian/English vocabulary, biographical/critical introds
more. 416pp. 5% x 8%. 26244-8
PHILADELPHIA THEN AND NOW: 60 Sites Photographed in the Past and
Present, Kenneth Finkel and Susan Oyama. Rare photographs of City Hall, Logm
Square, lndependenceHall,BetsyRosHoue.thndmuksJumpooed
contemporary views. Captures changing face of historic city. Introduction. Capuon&
128pp. 8% x 11.

AIA ARCHITECTURAL GUlDE 'IO NASSAU AND SUFFOLK COUNT]BS,
LONG ISLAND, The Ameri of Archi Long Island Chapter, and
the Socmy for the I‘reservanon of l.ong Lsland Antiquities. Comprehensive, well
d and g ill volume

to life over three centuries of
Long Island’s pell architectural heritage. More than 240 photographs with authori-
tative, extensively detailed captions. 176pp. 8% x 11. 26946-9
NORTH AMERICAN INDIAN LIFE: Customs and Traditions of 23 Tribes, Elsie
Clews Parsons (ed.). 27 fictionalized essays by noted anthropologists examine reli-

dditional facets of life among the Winnebago, Crow,
Z\ml. Eskimo, od:et tribes. 480pp. 6% x 9%. 273776
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FRANK LLOYD WRIGHT’S DANA HOUSE, Donald Hoffmann. Pictorial essay
of residential masterpiece with over 160 interior and exterior photos, plans, eleva-
tions, sketches and studies. 128pp. 9"/« x 10%. 29120-0

THE MALE AND FEMALE FIGURE IN MOTION: 60 Classic Photographic
Sequences, Eadweard Muybridge. 60 true-action photographs of men and women

walking, running, climbing, bending, tuming, etc., reproduced from rare 19th-
century masterpiece. vi + 121pp. 9 x 12. 247457

1001 QUESTIONS ANSWERED ABOUT THE SEASHORE, N. J. Berrill and
Jacquelyn Berrill. Queries answered about dolphins, sea snails, sponges, starfish, fish-
es, shore birds, many others. Covers appearance, breeding, growth, l'eedmg, much
more. 305pp. 5% x 8%. 23366-9

ATTRACTING BIRDS TO YOUR YARD, William J. Weber. Easy-to-follow guide
offers advice on how to attract the greatest diversity of birds: birdhouses, fe
water and waterers, much more. 96pp. 5%« x 8'%. 28927-3

MEDICINAL AND OTHER USES OF NORTH AMERICAN PLANTS: A
Hmonal Survey with Specul Refmnce to the Emem Indian Tribes, Charlotte

-Brown. 500 years of usage of
phnu,ma,shmb'metonm&mda, h US. Also lete iden-

tifying information. 343 illustrations. 544pp. 6% x 9%. 25951-X

STORYBOOK MAZES, Dave Phillips. 23 stories and mazes on two-page spreads:
Wizard of Oz, Treasure Island, Robin Hood, etc. Solutions. 64pp. 8% x 11. 23628-5

AMERICAN NEGRO SONGS: 230 Folk Songs and Spirituals, Religious and
Secular, John W. Work. This authoritative study traces the African influences of songs
sung and played by black Americans at work, in church, and as entertainment. The
author discusses the lyric significance of such songs as “Swing Low, Sweet Chariot,”

“John Henry,” and others and offers the words and music for 230 songs.
Bibliography. Index of Song Titles. 272pp. 6% x 9%. 40271-1

MOVIE-STAR PORTRAITS OF THE FORTIES, John Kobal (ed.). 163 glamor,
studio photos of 106 stars of the 1940s: Rita Hayworth, Ava Gardner, Marlon
Brando, Clark Gable, many more. 176pp. 8% x 114. 23546-7

BENCHLEY LOST AND FOUND, Robert Benchley. Finest humor from early 30s,
about pet peeves, child psychologists, post office and others. Mostly unavailable else-
where. 73 illustrations by Peter Amo and others. 183pp. 5% x 84%. 22410-4

YEKL and THE IMPORTED BRIDEGROOM AND OTHER STORIES OF
YIDDISH NEW YORK, Abraham Cahan. Film Hester Street based on Yek!(1896).
Novel, other stories among first about Jewish immigrants on N.Y.’s East Side. 240pp.
5% x 8%. 224279

SELECTED POEMS, Walt Whitman. Generous sampling from Leaves of Grass.
Twenty-four poems include “I Hear America Singing,” “Song of the Open Road.” “l
Sing the Body Electric,” “When Lilacs Last in the Dooryard Bloom'd,” “O

ly in!"-all reprinted from an authoritative ediﬁomljmofﬁdesmdﬁmlinu
128pp. 5% x 8%. 26878-0
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THE BEST TALES OF HOFFMANN, E. T. A. Hoffmann. 10 of Hoffmann’s most
important stories: “Nutcracker and ng of Mice,” “The Golden Flowerpot,” etc.
458pp. 5% x 8%, 217930

FROM FETISH TO GOD IN ANCIENT EGYPT, E. A. Wallis Budge. Rich
detailed survey of Egyptian conception of “God” and gods, magic, cult of animals,
Osiris, more. superb English translations of hymns and legends. 240 illustra-
tions. 545pp 5% x 8%. 25803-3

FRENCH STORIES/CONTES FRANGAIS: A Dual-Language Book, Wallace
Fowlie. Tm:torieobyl-‘md:mm\blmnto&muz “Micromegas” by Voltaire;
“The Atheist's Mass” by Balzac; “Minuet™ by de Maupassant; “The Guest® by
Camus, six more. Excellent English translations on facing pages. Also French-English
vocabulary list, exercises, more. 352pp. 5% x 84%. 26443-2
CHICAGO AT THE TURN OF THE CENTURY IN PHOTOGRAPHS: 122
Historic Views from the Collections of the

i large-
Loop, Hull House, Union Station, many other landmarks, circa 1904-1913

Mape. 144pp. 9% x 12%.
OLD BROOKLYN IN EARLY PHOTOGRAPHS, 1865-1929, William Lee
Younger. Luna Park, Gi d race track, of Grand Army Plaza, mov-
ing of Hotel Brighton, etc. 157 previously unpublished photographs. 165pp. 8% x 11%.
235874

THE MYTHS OF THE NORTH AMERICAN INDIANS, Lewis Spence. Rich
mdmlogy of the myths and legends of the Algornqums. Iroquois, innee:n and Sioux,
d b

y an
480pp. 5% x 8% 259676

AN ENCYCLOPEDIA OF BATTLES: Accounts of Over 1,560 Battles from 1479
sc to the Present, David Eggenberger. Essential details of every major battle in
recmdedhmoryfmmtheﬁmbﬁtleofMeglddom I479-ctoGren-d.un 1984, List
of Battle Maps. New Appendix covering the years 1967-1984. Index. 99 illustrations.
544pp. 6% x 9X. 24913-1

SAILING ALONE AROUND THE WORLD, Captain Joshua Slocum. First man
wnﬂwnndduworld.alonqmmnllboaLOneofgmfmofmmnﬂn told
in delightful manner. 67 ilk 294pp. 5% x 8%. 20326-3

ANARCHISM AND OTHER ESSAYS, Emma Gold: Powerful, p

Eropbedcuuy:ondmmn.mleofmnoﬁugpmonnform.pnnhn
ypocrisy, violence, etc. 271pp. 5% x 8% 22484-8
MYTHS OF THE HINDUS AND BUDDHISTS, Ananda K. Coomaraswamy and
Sister Nivedita. Great stories of the epics; deeds of Krishna, Shiva, taken from
puranas, Vedas, folk tales; etc. 32 illustrations. 400pp. 5% x 8%. 21759-0
THE TRAUMA OF BIRTH, Otto Rank. Rank’s controversial thesis that anxiety
neurosis is caused by profound psychological trauma which occurs at birth. 256pp.

5% x 8'%. 27974-X
A THEOLOGICO-POLITICAL TREATISE, Benedict Spinoza. Also contains
unfinished Political Treatise. Great classic on religious theory of government

liberty,
on common consent. R. Elwes translation. Total of 421pp. 5% x 8%. 20249-6
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MY BONDAGE AND MY FREEDOM, Frederick Douglass. Bom a slave,
became ken force in The best of Douglass’
biographies. Graphic description of slave life. 464pp. 5% x 8%, 224570

grap

FOLLOWING THE EQUATOR: A Journey Around the World, Mark Twain.
Fascinating humorous account of 1897 voyage to Hawaii, Australia, India, New
Zealand, etc. Ironic, bemused reports on peoples, customs, climate, flora and fauna,
politics, much more. 197 illustrations. 720pp. 5% x 8%. 26113-1

THE PEOPLE CALLED SHAKERS, Edward D. Andrews. Definitive study of
Shakers: origins, beliefs, practices, dances, social organization, furniture and crafts,
etc. 33 illustrations. 351pp. 5% x 8%. 21081-2
THE MYTHS OF GREECE AND ROME, H. A. Guerber. A classic of mythology,
generously illustrated, long prized for its simple, graphic, accurate retelling of the
principal myths of Greece and Rome, and for its commentary on their origins and
significance. With 64 illustrations by Michelangelo, Raphael, Titian, Rubens,

Canova, Bernini and others. 480pp. 5% x 8%. 27584-1
PSYCHOLOGY OF MUSIC Carl E. Seash Clusic wm-k di munc asa
dium from p" holog 1

g P Clear
tory und p ion, devel of rmmal ;Inlls, nature of munal
feelmg “host of othel wpws 88 figures. 408pp 5% x 8%. 21851-1

THE PHILOSOPHY OF HISTORY, Georg W. Hegel. Great classic of Western
thought develops concept that history is not chance but rational process, the evolu-

tion of freedom. 457pp. 5% x 8%. 201120
THE BOOK OF TEA, Kakuzo Ohkura. Mmot dmc of the Orient: en

P of culture in terms of tea
ceremony. 94pp 5% x 8%, 20070-1

LIFE IN ANCIENT EGYPT, Adolf Erman. Fullest, most thorough, detailed older
account with much not in more recent books, domuhc life, rehg:on, magic, medi-
cine, commerce, much more. Many il} i P b p g, carvings,
hieroglyphs, etc. 597pp. 5% x 8%. 22632-8

SUNDIAIS Then' Theory and Comtmchon, Albert ngh Far and away the best,
most of ideas,

ag

. Simple, hnical allows even children to build

several ofdme dials. Over 100 illustrations. 230pp. 5% x 8%. 22947-5
THEORETICAL HYDRODYNAMICS, L. M. Miine-Thomson. Chuu: exposition
oﬁhemalhemahultheoryofﬂmdmouon, pplicable to both hydrody and
i 768pp. 6% x 9%. 68970-0

SONGS OF EXPERIENCE: Facsimile Reproduction with 26 Plates in Full Color,

William Blake. 26 full-color plates from a rare 1826 edition. Includes “The Tyger,”

“London,” “Holy Thursday,” and other poems. Printed text of poems. 48pp. 54 x 7.
24636-1

OLD-TIME VIGNETTES IN FU[L COLOR, Carol Belanger Grafton (ed.). Over
390 often ! ill selected from archives of Victorian
graphics—pretty women posing, children playing, food, flowers, kittens and puppies,
smiling cherubs, birds and butterflies, much more. All copyright-free. 48pp. 9% x 12%.
27269-9
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PERSPECTIVE FOR ARTISTS, Rex Vicat Cole. Depth, pcnpechve of sky and sea,
shadows, much more, not usually d. 391 diagr of draw-
ings and paintings. 279pp. 5% x 8%. 224872

DRAWING THE LIVING FIGURE, Joseph Sheppard. Innovative approach to
artistic anatomy focuses on specifics of surface anatomy, rather than muscles and
bones. Over lmdnwmpoflwemodelsmﬁvm,bukmdndewmmdmmde
ly varying panying diagr 177 ilh i Index.
144pp. 8% x11%. 267237

GOTHIC AND OLD ENGLISH ALPHABETS: 100 Complete Fonts, Dan X. Solo.
Addpawu elepncetopouen,nps.odm'whncswnh IOOmmnmgcopynght
free alphabets: Black Dolbey, G m g many |

numerals, punctuation marks. 104pp. 8% x 11. 246957

HOW TO DO BEADWORK, Mary White. Fundamental book on craft from simple
projects to five-bead chains and woven works. 106 illustrations. 142pp. 5% x 8.
20697-1

THE BOOK OF WOOD CARVING, Charles Marshall Sayers. Finest book for
Is and offers 34 designs. “Absolutely first rate . . . well
dloughl out and well executed.”-E. J. Tangerman. 118pp. 7% x 10%. 2365H

ILLUSTRATED CATALOG OF CIVIL WAR MIUTARY GOODS: Union Army
‘Weapons, Insignia, Uniform ies, and Other Hardey,
and Graham. Rare, pro(usely ﬂlum(ed 1846 catalog includes Union Army uniform
and dress regul jon, coats, insignia, flags, swords, rifles, etc.
226 illustrations. lGOpp 9x 12 24939-5

WOMEN'S FASHIONS OF THE EARLY 1900s: An Unabridged Republication of
“New York Fashions, 1909, National Cloak & Suit Co. Rare catalog of mail-order
fashions documents women’s and children’s clodnng styles :honly after the tumn of

themmryCaptwmoﬁerfnll‘ i prices. for fashion,
PP ty 725 illustrations. 128pp. 8% x 11%. 27276-1

THE 1912 AND 1915 GUSTAV STICKLEY FURN]TURE CATALOGS, Gusuv

Stickley. With over 200 detailed ill ions and these two

essential reading and reference materials and identification guides for Snddey furm

ture. Captions cite materials, dimensions and prices. 112pp. 6% x 9%. 26676-1

EARLY AMERICAN LOCOMOTIVES, John H. White, Jr. Finest locomotive
engravings from early 19th century: historical (1804-74), main-line (after 1870), spe-
cial, foreign, etc. 147 plates. 142pp. 11% x 8%. 27723

THE TALL SHIPS OF TODAY IN PHOTOGRAPHS, Frank O. Braynard.
Lavishly illustrated tribute to nearly 100 majestic contemporary sailing vessels:
Amerigo Vespucci, Clearwater, Canstmnmn, Eagle, Mayllower, Sea Cloud, Victory,
many more. Authoritati p provide on each ship. 190
black-and-white photograph andill ions. Introduction. 128pp. 8% x 11%.
27163-3




CATALOG OF DOVER BOOKS

LITTLE BOOK OF EARLY AMERICAN CRAFTS AND TRADES, Peter
Stockham (ed.). 1807 children’s book explains crafts and trades: baker, hatter, cooper,
potter, and many others. 23copperphlelllumnonx 140pp. 4°/s x 6. 23336-7

VICTORIAN FASHIONS AND COSTUMES FROM HARPER'S BAZAR,
1867-1898, Stella Blum (ed.). Day costumes, evening wear, sports clothes, shoes,
hats, other accessories in over 1,000 detailed engravings. 320pp. 9% x 124. 22990-4

GUSTAV STICKLEY, THE CRAFTSMAN, Mary Ann Smn.h. Superb study sur-
veys broad scope of Stickley’s achi Design phi-

losophy, rise and fall of the Craftsman empire, drucnpuom and floor plans for many
Craftsman houses, more. 86 black-and-white halftones. 31 line illustrations.
Introduction 208pp. 6% x 9%. 27210-9

THE LONG ISLAND RAIL ROAD IN EARLY PHOTOGRAPHS, Ron Ziel.
Over 220 rare photos, informative text document origin ( 1844) and development of
rail service on Long Island. Vintage views of early trains, locomotives, stations, pas-
sengers, crews, much more. Captions. 8% x 11%. 26301-0

VOYAGE OF THE LIBERDADE, Joshua Slocum. Great 19th-century mariner’s
thrilling, first-hand account of the wreck of his ship off South America, the 35-foot
boat he built from the wreckage, and its remarkable voyage home. 128pp. 5% x 8%.
40022-0

TEN BOOKS ON ARCHITECTURE, Vimnvnu Tlle most mponnm book ever
written on architecture. Early Roman logy, classical orders, site
selection, all other aspects. Morgan translation. 331pp. 5% x 8%. 20645-9

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge. More than 4,500

stopped-action photos, in action series, showing undraped men, women, children

jumping, lying down, throwing, sitting, wrestling, carrying, etc. 390pp. 7% x 10%.
20204-6 Clothbd.

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA,
William M. Harlow. Best one-volume guide to 140 trees. Full descriptions, woodlore,
range, etc. Over 600 illustrations. Handy size. 288pp. 4% x 6%. 20395-6

SONGS OF WESTERN BIRDS, Dr. Donald J. Borror. Complete song and call
repertoire of 60 western species, including flycatchers, j; cactus wrens, many
more-includes fully illustrated booklet. m and manual 99913-0

GROWING AND USING HERBS AND SPICES, Milo Miloradovich. Versatile
p all the i needed for cultivation and use of all the herbs

and spices available in North America. 4 ilh ions. Index. Glossary. 236pp. 5% x 84.
25058-X

BIG BOOK OF MAZES AND LABYRINTHS, Walter Shepherd. 50 mazes and
labyrinths in all—classical, solid, ripple, and more-in one great volume. Perfect inex-
pensive puzzler for clever youngsters. Full solutions. 112pp. 8% x 11. 22951-3
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PlANOTUNlNGJ Cree Fischer. Clearest, best book for beginner, amateur.
Simple repairs, notes, tuning by easy method of flattened fifths. No
prevwm:hllsneeded. 201pp. 5% x 8%. 232670

HINTS TO SINGERS, Lillian Nordica. Selecting the right teacher, devek::mg‘ con-
ﬁdence ovucomingmgehgm.mdmmyodmnnpomnnhﬂsmve oughtful

in this written by a world-famous diva of four
deudeuexpeﬁem%ppﬁxsl 40094-8

THE COMPLETE NONSENSE OF EDWARD LEAR, Edward Lear. All nonsense
limericks, zany alphabets, Owl and Pussycat, songs, nonsense botany, etc., illustrated
by Lear. Toh.l of 320pp. 5% x 8%. (Available in U.S. only) 201678

VICIORIAN PARLOUR POETRY: AnAnnomedAnd:o!ogy, Michael R. Turner.

17 gems by Longfellow, Tennyson, Browning, many lesser-known poets. “The
VingeBlukmd:."Onr{emeNotngTomghl,"Onlle.bySmﬂL dozens
more, often difficult to find elsewhere. Indexofpoeu,udeu,ﬁmhmmn+325pp
5% x 8%

DUBLINERS, James Joyce. Fifteen stories offer vivid, tightly focused observations
of the lives of Dublin’s poorer classes. Alleuwne,"l'beDud. is considered a mas-
iece. Reprinted complete and d from standard edition. 160pp. 5% x 84.
26870-5

GREAT WEIRD TALES: MSmne:bylavemﬁ,thkwood.Mu:benandOdnn.
S. T. Joshi (ed.). 14 spellbinding tales, including *The Sin Eater,” by Fiona McLeod,
“The Eye Above the Mantel,” by Frank Belknap Long, as well as renowned works
by R. H. Barlow, Lord Dunsany, Arthur Machen, W. C. Morrow and eight other

P P

masters of the genre. 256pp. 5% x 8%. (Available in U.S. only.) 404366
THE BOOK OF THE SACRED MAGIC OF ABRAMELIN THE MAGE, trans-
lated by S. MacGregor M

of J magic. Basic
docnmemmAlﬂMCrvwley GoldenDawn;tonszGSpp 5% x 8%. 23211-5

NEW RUSSIAN-ENGLISH AND ENGLISH-RUSSIAN DICTIONARY, M. A.
O’Brien. This is a handy Russian di a
nmmtofmfmmaﬁon,mdndmgmmmmwﬁpp 4% x 6%. 20208-9

HISTORIC HOMES OF THE AMERICAN PRESIDENTS, Second, Revised
Mnon,lrvamAmveluagmdetoAmenuanndenmlhomqmouupen

to the public, d g and d g homes d by every

from George Washington to George Bush. Withvwhnghoun,ldmmondnrgu,
travel routes. 175 photographs. Index. 160pp. 8% x 11. 267512
NEW YORK IN THE FORTIES, Andreas Feininger. 162 Imllunt hs by
the with L
T-me:Sqmumyn,muchebeﬁvmutyacmpnk.&puombyjohnvonﬂm
181pp. 9% x 10%. 23585-8
INDIAN SIGN LANGUAGE, William Tomkins. Over 525 signs developed by
Sioux and other Written i and di Also 290

111pp. 6% x 9%. T 22029
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ANATOMY: ACompleeeGmdefotAmﬁsjotephSheppnd.AmMofﬁg\nn
drawing shows artists how to render human anatomy convincingly. Over 460
trations. 224pp. 8% x 11%. 27279-6

MEDIEVAL CALLIGRAPHY: Its History and Technique, Marc Drogin. Spirited
huwry comprellennve mmlmon manual covers 13 uyles (u. 4d: century through
15th). E: tions for dup

modem tools. 224pp 8% x 11%. 26]42 -5
DRIED FLOWERS: How to Prepare Them, Sarah Whitlock and Martha Rankin.
Complete instructions on how to use silica gel, meal and borax, perlite

aggregale,
sand and borax, glycerine and water to create attractive permanent flower arrange-
ments. lanlmnonsS?pp 5% x 8%. 218023

EASYTO-MAKE BIRD FEEDERS FOR WOODWORKERS, Scott D. Campbell.

Detailed, guide for d ing, caring for and using feed-
ers. Text.nllumaﬁomfot udmcandwntempomydenm%pp 5% x 84%.
258475

SCOTTISH WONDER TALES FROM MYTH AND IEGEND Donald A.

Mackenzie. 16 lively tales tell of giants rumbling down of a magic
wand that turns stone pillars into ofgodslnd evil hags, power-
ful forces and more. 240pp. 5% x 8%. 296776

THE HISTORY OF UNDERCLOTHES, C. Willet Onnmngmn and Phyllis
of English

d survey
undetprment:.enhancedmd:over 100 illustrations: mmmnnyhced-npbodice,
footed long drawers (1795), 19th-century bustles, 19th-century corsets for men,
Victorian “bust improvers,” much more. 272pp. 5% x 8%. 271242

ARTS AND CRAFTS FURNITURE: The Complete Brooks Catalog of 1912,
Brooks Manufacturing Co. Photos and detailed descriptions of more than 150 now
very collectible furniture designs from the Arts and Crafts movement depict daven-
pmu,mbuﬂeﬁ,desks.hbks.ch‘m.bedﬂead;dmmdmdlbuﬂ!of
solid, quarter-sawed Invaluabl and of

Amencanamdthedeconnveamwpp“x% 27471-3

WILBUR AND ORVILLE: A Biography of the Wright Brothers, Fred Howard.
Definitive, crisply written study tells the full story of the brothers’ lives and work. A
vividly written biography, unpcnllledmswpeandcolor.tlmallocapmmdn
spirit of an extraordinary era. 560pp. 6% x 9

mEARTSOFmESAILOR.KnmSplmgdeopework.HmeyGam

Smith. Indi tools, basic knots and useful hitches;
handsewing and canvas work, more. OvefloomummDehdnﬁllmdh)gfmm
loven.256pp 5% x 84%. 264408

FRANK LLOYD WRIGHT'S FALLINGWATER: The House and Its History,
Second, Revised Edition, Donald Hoffmann. A total revision—both in text and illus-
trations—of the standard d on Falling theboldest.moapawmluchr
tectural statement of Wright's mature years, upd:

ﬁomthencenﬂynpeneannklhydeghtAmhivu.‘Fuamm' Tth)Srk
Times. 116 illustrations. 128pp. 9% x 10%. 27430-6
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PHOTOGRAPHIC SKETCHBOOK OF THE CIVIL WAR, Alexander Gardner.
100 photos taken on field during the Civil War. Famous shots of Manassas Harper’s
Ferry, Lincoln, Richmond, slave pens, etc. 244pp. 10% x 8%. 22731-6

FIVE ACRES AND INDEPENDENCE, Maurice G. Kains. Great back-to-the-land
classic explains basics of self-sufficient farming. The one book to get. 95 illustrations.
397pp. 5% x 84. 20974-1

SONGS OF EASTERN BlRDS Dr Donnldj Bon'or Songs and ulls of60 species
UsS.

most common to eastern p larks,
many more in high-quality recmdmg Cassette and manual 99912-2
A MODERN HERBAL, Mnglm Gneve Mnch the ﬁullen. most exact, most useful
p Gigantic alp dia, from uomte to

zedoary, pvu ical inf folklore,
much else. Indispensable to serious reader. 161 “illustrations. 888pp. 6% x 94. 2 vol.
set. (Available in U.S. only.) Vol. I: 227987
Vol. I1: 22799-5

HIDDEN TREASURE MAZE BOOK, Dave Phillips. Solve 34 challenging mazes
accompanied by heroic tales of adventure. Evil dragons, people-eating plmts. blood-
thirsty giants, many more dangerous adversaries lurk at every twist and tumn. 34
mazes, stories, solutions. 48pp. 84 x 11. 245667

LETTERS OF W. A. MOZART, Wolfgang A. Mozart. Remarkable letters show
bawdy wit, humor, imagination, musical insights, contemporary musical world;

includes some letters from Leopold Mozart. 276pp. 5% x 8%. 22859-2
BASIC PRINCIPLES OF CLASSICAL BALLET, Agnppma Vaganova. Great
Russian th teacher exp ds for ical ballet. 118 illus-
trations. 175pp. 5% x 84%. 220362
THE_[UMPING FROG, Mark Twain. Revenge edition. The ongmzl story of The
Jumping Frog of Cal County, a French translation, and

Twalnshlhnous “retranslation” from the French. 12 ions. 66pp. 5% x 8Y%.
226867

BEST REMEMBERED POEMS, Martin Gardner (ed.). The 126 poems in this

superb collection of 19th- and 20th-century British and American verse range from

Shelley’s “To a Skyhrk to the impassioned “Renascence” of Edna St. Vincent Millay
and to Edward Lear’s whimsical “The Owl and the Pussycat.” 224pp. 5% x 8%.

27165-X
COMPLETE SONNETS, William Shakesp Over 150 isite poems deal
with love, fnendslnp. the tyranny of time, beauty’s evanescence, death and other
themes in 1 of ble power, precision and beauty. Glossary of archaic
terms. 80pp. 5% x 8%, 26686-9

THE BATTLES THAT CHANGED HISTORY, Fletcher Pratt. Eminent historian
profiles 16 crucial conflicts, ancient to modern, that changed the course of civiliza-
tion. 352pp. 5% x 8%. 41129-X
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THE WIT AND HUMOR OF OSCAR WILDE, Alvin Redman (ed.). More than
1,000 ripostes, paradoxes, wisecracks: Work is the curse of the drinking classes; I can
resist everything except temptation; etc. 258pp. 5% x 8%. 20602-5

SHAKESPEARE LEXICON AND QUOTATION DICTIONARY, Alexander
Schmidt. Full d shades of ing in every word in plays and
poems. More than 50,000 exact quotations. 1,485pp. 6% x 9%. 2-vol. set.
Vol. 1: 22726-X
Vol. 2: 22727-8

SELECTED POEMS, Emily Dickinson. Over 100 best-] known. best-loved poems by
one of America’s f poets, d from early editions. No
comparable edition at this price. Index of first lines. 64pp. 5% x 8%. 26466-1

THE INSIDIOUS DR. FU-MANCHU, Sax Rnhmer The ﬁm of the poplllll’ mys-
tery series introduces a pair of English d

Dr. Fu-Manchu. Flavorful atmosphere, fast:| paced au:non, and colorful characters
enliven this classic of the genre. 208pp. 5% x 8%. 29898-1

THE MALLEUS MALEFICARUM OF KRAMER AND SPRENGER, translated
by Montague Summers. Full text of most important witchhunter’s “bible,” used by
both Catholics and Protestants. 278pp. 6% x 10. 228029

SPANISH STORIES/CUENTOS ESPANOLES: A Dual-Language Book, Angel
Flores (ed.). Unique format offers 13 great stories in Spanish by Cervantes, Borges,
others. Faithful English translations on facing pages. 352pp. 5% x 8%. 25399-6

GARDEN CITY, LONG ISLAND, IN EARLY PHOTOGRAPHS, 1869-1919,
Mildred H. Smith. Handsome treasury of 118 vintage pictures, accompanied by care-
fully researched captions, document the Garden City Hotel fire (1899), the Vander-
bilt Cup Race (1908), the first airmail flight departing from the Nassau Boulevard
Aerodrome (1911), and much more. 96pp. 8% x 11%. 40669-5

OLD QUEENS, N.Y, IN EARLY PHOTOGRAPHS, Vincent F. Seyfried and
William_Asadorian. Over 160 rare photographs of Maspeth, Jamaica, Jackson

Heights, and other areas. Vintage views of DeWitt Clinton mansion, 1939 World’s

Fair and more. Captions. 192pp. 8% x 11. 26358-4

CAP']'URED BY THE INDI.ANS 15 Firsthand Accounts, 1750-1870, Frederick

true h of grisly torture, bloody conflicts,
nlendes: pursuits, miraculous escapes and more, by people who lived to tell the tale.
384pp. 5% x 84%. 24901-8

THE WORLD'S GREAT SPEECHES (Fourth Enlarged Edition), Lewis Copeland,
Lawrence W. Lamm, and Slep en J. McKenna. Nurly 300 :peed:et provude public
speakers with a wealth of d quotes and i icles’ funeral ora-
tion and William Jennings Bryan s “Cross of Gold Speech” w Mnlcolm X’s powerful
words on the Black Revolution and Earl of Spenser’s tribute to his sister, Diana,
Princess of Wales. 944pp. 5% x 8% 40903-1

THE BOOK OF THE SWORD, Sir Richard F. Burton. Great Victorian
scholar/adventurer’s eloquent, erudite history of the “queen of weapons—from pre-
hmo?' to early Roman Empire. Evolution and development of early swords, varia-

sabre, broadsword, cutlass, scimitar, etc.), much more. 336pp. 6% x 9%.
254348
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AUTOBIOGRAPHY: The Story of My Experiments with Truth, Mohandas K.
Gandhi. Boyhood, legal studies, purification, the growth of the Satyagraha (nonvio-
lent protest) movement. Cnnal,mspumgwotkofthemmnsponnbleforthefree
dom of India. 480pp. 5% x 8%. (Available in U.S. only.) 24593-4

CELTIC MYTHS AND LEGENDS, T. W. Rolleston. Masterful retelling of Irish and
Welsh stories and tales. Cuchulain, King Arthur, Deirdre, the Grail, many more. First
paperback edition. 58 full-page illustrations. 512pp. 5% x 8%. 26507-2

THE PRINCIPLES OF PSYCHOLOGY, William James. Famous long course com-

plete, unabridged. Stream of thought, time p memory, | meth-

ods; great work decades ahead of its time. 94ﬁg\|m 1,391pp. . 5% x 8%. 2-vol. set.
Vol. I 20381-6 Vol. I1: 203824

1'HE _WORLD AS W'ILL AND REPRESENTATION Arthur Schopenhauer.
of S ’s life work, correcting more than

lOOOerm:s, in earlier lations. Transl d by E. F. J. Payne. Total of
1,269pp. 5% x 8%. 2-vol. set. Vol. 1: 21761-2 Vol. 2: 217620

MAGIC AND MYSTERY IN TIBET, Madame Alexandra David-Neel. Experiences
among lamas, magicians, sages, sorcerers, Bonpa wizards. A true psychic discovery.
32 dlnmnons. 321pp. 5% x 8%. (Available in U.S. only.) 226824

THE EGYPTIAN BOOK OF THE DEAD, E. A. Wallis Budge Complete repro-
duction of Ani’s papyrus, finest ever found. Full hieroglyphic text, interlinear translit-
eration, word-for-word translation, smooth translation. 533pp. 6% x 9%. 21866-X

MATHEMATICS FOR THE NONMATHEMATICIAN, Morris Kline. Detailed,
co“eg&kvelmmofmwmmadumlmdhmwwnmwﬂ:num
g Lists. Tables. Numerous figures. 641pp. 5% x 8%.

24823-2
PROBABILISTIC METHODS IN THE THEORY OF STRUCTURES, Isaac
Elishakoff. Well-written introc covers the el of the theory of probabili-

tyﬁvmtwootmorenndomvmnbles,dnrdnhhtyofmdlmﬂuvm:bkmm
the theory of random function, Monte Carlo methods of treating problems mapable
of exact solution, and more. Examples. 502pp. 5% x 8%.

THE RIME OF THE ANCIENT MARINER, Gustave Doré, S. T. Coleridge.
Doré’s finest work; 34 plates capture moods, subtleties of poem. Flawless full-size
reproductions printed on facing pages with authoritative text of poem. “Beautiful.
Simply beautiful.”—Publisher’s Weekly. 77pp. 9% x 12. 22305-1

NORTH AMERICAN INDIAN DESIGNS FOR ARTISTS AND CRAFTSPEOPLE,
Eva Wilson. Over 360 authentic copyright-free designs from Navajo blankets,
Hopi pottery, Sioux buffalo hides, more. Geometrics, ic figures, plant and animal
motifs, etc. 128pp. 8% x 11. (Not for sale in the United Kingdom.) 25341-4

SCULPTURE: Principles and Practice, Louis Slobodkin. Step-by-step approach to
clay, plaster, mlg!onrdanuhndmodgm.mdnwmp,plwws 255pp. 8% x 11.
22960-2

THE INFLUENCE OF SEA POWER UPON HISTORY, 1660-1783, A. T. Mahan.
Influential classic of naval history and tactics still used as text in war colleges. First
paperback edition. 4 maps. 24 battle plans. 640pp. 5% x 8%. 25509-3
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THE STORY OF THE TITANIC AS TOLD BY ITS SURVIVORS, Jack Winocour
(ed.). What it was really like. Panic, despair, shocking inefficiency, and a little hero-
ism. More thrilling than any fictional account. 26 illustrations. 320pp. 5% x 84%.
20610-6
FAIRY AND FOLK TALES OF THE IRISH PEASANTRY, William Butler Yeats
(ed.). Treasury of 64 tales from the twilight world of Celtic myth and legend: “The
Soul Cages,” “The Kildare Pooka,” “King O’Toole and his Goose,” many more.
Introduction and Notes by W. B. Yeats. 352pp. 5% x 8%. 26941-8

BUDDHIST MAHAYANA TEXTS, B B. Cowell and others (eds.). Superb, accu-
rate of basic highly i in his-
tory of religions. The Buddhnhmn of A:vaghoaln. Larger Sukhavauvy\l.ha. more.
448pp. 5% x 8%. 255522

ONE TWO THREE . . . INFINITY: Facts and Speculations of Science, George
Gamow. Great physicist’s fascinating, readable overview of contemporary science:
numbser theory, relativity, fourth dimension, entropy, genes, atomic structure, much
more. 128 illustrations. Index. 352pp. 5% x 84%. 25664-2

EXPERIMENTATION AND MEASUREMENT, W. ]. Youden. Introductory man-
ual explains laws of measurement in simple terms and offers tips for achieving accu-
racy and mini g errors. N of useo[ s, exper-
imenting with machines. 1994 edition. F d. Preface. Introducti

Selected Readings. Glossary. Index. Tables and figures. l28pp 5% x 8%. 40451-X

DALI ON MODERN ART: The Cuckolds of Anuqlmed Modem Art, Sulvadm Dali.
i O

lnﬂuemnl painter skewers modemn art and its p g
casso, Cézanne, Turner, more. 15 rend ings di d. 44 calligraphic
decorahom by Dali. 96pp. 5% x 8%. (Avnhble in US only) 29220-7

ANTIQUE PLAYING CARDS: A Pictorial History, Henry René D’Allemagne.
Over 900 elaborate, decorative images from rare playing cards (14th-20th centuries):
Bacchus, death, dancing dogs, hunting scenes, royal coats of arms, players cheating,
much more. 96pp. 9% x 12k. 292657

MAKING FURNITURE MASTERPIECES: 30 Projects with Measured Drawings,
Franklin H. Gottshall. Step-by-step instructions, illustrations for constructing hand-
some, useful pieces, among them a Sheraton desk, Chippendale chair, Spanish desk,
Queen Anne table and a William and Mary dressing mirror. 224pp. 8% x 11%.
29338-6

THE FOSSIL BOOK: A Record of Prehistoric Life, Patricia V. Rich et al. meluely
illustrated definitive guide covers everyt.hmg ﬁ'om single-celled organisms and
dinosaurs to birds and T climate and man. Over

1,500 illustrations. 760pp. 7'% x lO". 29371-8

Paperbound unless otherwise indicated. Available at your book dealer, online at
www.doverpublications.com, or by writing to Dept. G, Dover Publications, Inc., 31 East 2nd
Street, Mineola, NY 11501. menmpmmhmmwlwﬁnunhg\m(pmm
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GAMES AND DECISIONS: INTRODUCTION AND CRITICAL SURVEY, R. Duncan Luce and
Howard Raiffa. (65943-7)
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CONCEPTS
OF MODERN

MATHEMATICS
lan Stewart

Someym.go “new math” tooktbeooqmtryschmoomsbymm Buedonthe

style of math 1 exposition fi
mm,mgodwutomnhmdenunmmto ipul bers and f¢ 1!
but to grasp the The result, atleast at first, was a
great deal of confusion among h d -ndpnreuu Smoethm the
nevuveaspecuof newmath havebeen limi d and its positi

In this charming volume, a noted English mathematician uses humor and anecdote
to illuminate the concepts underlying “new math”: groups, sets, subsets, topology,
Boolean algebra and more. A ding to Profe Si an und ding of
these concepts offers the best route to grasping the true nature of mathematics, in
pmﬂard)epowu.beuuyandnﬁhtyofpunmﬂlemdu No advanced

thematical back is needed (a smattering of algebra, geometry and
ttigonometry is helpful) to follow the author’s lucid and thought-provoking

discussions of such topics as f Y Ys ting, WIOU
hyperspace, linear algebra, real analysis, probability, p
modern mathematics and much more.

By the time readers have finished this book, they'll have a much clearer grasp of
how modern mathematicians look at figures, functions and formulas and how a
firm grasp of the ideas underlying “new math” leads toward a genuine comprehen-
sion of the nature of mathematics itself.

Unabridged, corrected, slightly enl. ‘Dova(lm) publicati ‘theedman
published by Penguin Books, H: Middk England, 1981 (ori
edition: 1975). PrefwetotbeDovetEdmm Appendix. 200 illustrations. Bibliog-

raphy. Index. 352pp. 5% x 8%. Paperbound.
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THE ENJOYMENT OF MATHEMATICS: SELECTIONS FROM MATHEMATICS FOR THE
AMATEUR, Hans Rademacher and Otto Toeplitz. 208pp. 5% x 8. 26242-1 Pa.

THE DEVELOPMENT OF MATHEMATICS, E. T. Bell. xiii+637pp. 5% x 8% 27239-7
Pa.

NUMBER WORDS AND NUMBER SYMBOLS: A CULTURAL HisTORY oF NuMBERs, Karl
Menninger. xiii+480pp. 6 x 9/. 27096-3 Pa.
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